
Anisotropic Total Variation Based Image
Restoration Using Graph Cuts

Bjørn Rustad

Master of Science in Physics and Mathematics

Supervisor: Markus Grasmair, MATH

Department of Mathematical Sciences

Submission date: February 2015

Norwegian University of Science and Technology

Abstract
In this thesis we consider a particular kind of edge-enhancing image restoration
method based on total variation. We want to address the fact that the total
variation method in some cases leads to contrast loss in thin structures. To reduce
the contrast loss a directional dependence is introduced through an anisotropy
tensor. The tensor controls the regularization applied based on the position in the
image and the direction of the gradient. It is constructed using edge information
extracted from the noisy image. We optimize the resulting functional using a
graph cut framework; a discretization which is made possible by a coarea and a
Cauchy–Crofton formula. In the end we perform numerical studies, experiment
with the parameters and discuss the results.

Sammendrag
I denne masteroppgaven ser vi på en spesifikk kant-bevarende støyfjerningsalgo-
ritme basert på «total variation». Vi tar for oss at «total variation» i noen tilfeller
fører til tap av kontrast i detaljer og tynne strukturer. For å redusere kontrast-tapet
introduserer vi en retningsavhengig anisotropitensor. Denne tensoren kontrollerer
støyfjerningen basert på posisjonen i bildet, og retningen til gradienten i punktet.
Den blir konstruert basert på kant-informasjon fra det opprinnelige støyete bildet.
Vi minimerer den resulterende funksjonalen i et graf-kutt-rammeverk, som er gjort
mulig ved hjelp av en coarea- og en Cauchy–Crofton-likning. Vi avslutter med en
numerisk studie, eksperimentering med parametrene og diskusjon av resultatene.

Preface

This master thesis concludes my study at the Applied Physics and Mathemat-
ics Master’s degree program with specialization in Industrial Mathematics at the
Norwegian University of Science and Technology (NTNU).

I would like to thank my supervisor Markus Grasmair at the Department of Math-
ematical Sciences for invaluable help and discussion throughout my work with my
project and this thesis.

Finally I would like to thank my family for their support, and Mats, Lars, Kine,
Hager, Edvard and Henrik for productive discussions around the coffee pot.

Bjørn Rustad, February 8, 2015.

Contents

1 Introduction 1

2 Methods in image restoration 3
2.1 Diffusion filtering . 4
2.2 Total variation . 6

3 Continuous formulation 11
3.1 Anisotropic total variation . 11
3.2 Well-posedness . 16
3.3 Anisotropic coarea formula . 19
3.4 Anisotropic Cauchy–Crofton formula 24

4 Discrete formulation 32
4.1 Discretization . 32
4.2 Graph cut approach . 41

5 Maximum flow 47
5.1 Flow graphs . 47
5.2 Augmenting path algorithms . 49
5.3 Other algorithms . 50
5.4 Push–relabel algorithm . 51
5.5 Boykov–Kolmogorov algorithm . 60

6 Results 66
6.1 Tensor parameters . 66
6.2 Neighborhood stencils . 70
6.3 Restoration . 73

7 Discussion and conclusion 76

iii

iv CONTENTS

Bibliography 79

List of Figures 83

List of Tables 85

List of Symbols 87

A C++ implementation 89
A.1 main.cpp . 90
A.2 image.hpp . 92
A.3 image.cpp . 93
A.4 anisotropy.hpp . 96
A.5 anisotropy.cpp . 96
A.6 graph.hpp . 99
A.7 graph.cpp . 101
A.8 selectionrule.hpp . 109
A.9 selectionrule.cpp . 110
A.10 neighborhood.hpp . 111

Chapter 1
Introduction

Image processing is becoming an increasingly important part of our modern com-
puterized world. Tasks previously only performed by humans, like detecting edges,
recognizing textures and inferring shapes and motions can now be performed al-
gorithmically. The background of these methods spans several fields, including
psychology and biology for the study of human vision, statistics and analysis for
the mathematical background, and computer science for their implementation and
performance analysis.

Image restoration methods are concerned with trying to remove noise or recover
otherwise degraded images. Possible noise can result from the physical nature of
light traveling to your sensor, dust on your lens, and many other sources. Therefore
numerous different approaches to denoising exist, each having their own strengths
and weaknesses. Some of these are introduced in Chapter 2, and one of the main
challenges they all face is the recovery of edges.

A method well known for recovering edges is the total variation method, as the
total variation does not favor smooth gradients over edges. I gave an overview of
this method in my project work [1], where I used a graph cut framework to obtain
a numerical solution. The method consists of trying to reduce the total variation
of the image, while still staying “close” to the original.

A problem with the total varation method is that contrast is often lost, espe-
cially in fine details and thin structures. In this thesis we try to alleviate this. We
extend the method by introducing an anisotropy tensor into the total variation,
thus making it directionally dependent. This means we can control the regular-
ization applied to the image based on position and direction. The main idea is
then to reduce the regularization applied across edges in the image, while we still
regularize along them.

The variational problem we obtain is a convex minimization problem, and
many optimization approaches exist. We choose to discretize in such a way that

1

2 CHAPTER 1. INTRODUCTION

we can apply the same graph cut framework used in my project work [1]. Through
the coarea formula, the functional is decomposed into a sequence of minimization
problems, one for each level of the image. These separate level problems are then
transformed and discretized further using an anisotropic Cauchy–Crofton formula
that we develop. Similar formulas have been presented before in other contexts.

A nice property of this numerical approach is that we can prove that the
graph cut framework finds an exact global minimizer of the discrete functional.
Additionally we verify that the discrete functional is consistent with the continuous
one.

We present and implement two maximum flow algorithms that allow us to find
minimum cuts corresponding to minimizers of the discrete functionals. The push-
relabel algorithm is considered to be the fastest and most versatile for general
graphs, while the Boykov–Kolmogorov algorithm is specially tailored for the type
of graphs we find in these kinds of imaging applications. We describe every part
of the method in detail such that it can be easily implemented by the reader. In
addition, a C++ implementation is attached.

In the end we present numerical results that show how the different parame-
ters affect the restoration, and we look into and explain some artifacts caused by
approximations in the discretization. Further we look at how the introduction of
the anisotropy in certain cases amend some of the weaknesses of the total variation
method. We particularly look at how contrast loss is reduced in images containing
thin structures such as fingerprints.

Chapter 2
Methods in image restoration

There are numerous methods in image restoration, but we do not have time nor
space to discuss them all. In short overview, which is an extension of the one
given in my project [1], we will focus on the methods related to the anisotropic
total variation method considered later in this thesis. See [2] and [3] for more
background on image processing in general.

In this chapter, and also in the rest of the thesis we will assume that we are
given an image 𝑓 ∶ Ω → ℝ where Ω is a rectangular, open domain. Because of
limitations in the numerical method used, the codomain is ℝ and we are thus
restricted to monochrome, or grayscale images. Such images are produced in large
numbers by for example ultrasound, X-ray and MRI machines.

The space in which the image 𝑓 resides in will vary, but since we are looking
at image restoration methods, we assume that it includes some kind of noise.
Depending on the application and how the image is obtained, one might construct
different models describing different types of noise.

We will assume that the given image 𝑓 is a combination of an underlying,
actual image 𝑢∗, and some noise 𝛿. The simplest model is additive noise where the
assumption is that 𝑓 = 𝑢∗ + 𝛿. There is also multiplicative noise where 𝑓 = 𝑢∗ ⋅ 𝛿.
An other much seen noise type is salt and pepper noise, which is when black and
white pixels randomly appear in the image.

These are only models, and in the real world the noise might be more complex,
and even come from a combination of sources. Depending on the application, the
goal might not even be to recover 𝑢∗, but rather to obtain an output which fulfills
certain smoothness or regularity properties. In any case, we will continue denoting
the noisy input image 𝑓 and use 𝑢 for the output image in the description of the
restoration methods.

3

4 CHAPTER 2. METHODS IN IMAGE RESTORATION

2.1 Diffusion filtering
Diffusion filtering is a broad group of filtering and restoration methods based on
physical diffusion processes. The basic idea is to take the noisy image as the
initial value of some diffusion process, and then let it evolve for some time. The
best known method is probably the Gaussian filter or Gaussian blur, in which one
convolves the image with the Gaussian function

𝐾𝜎(𝑥, 𝑦) = 1
2𝜋𝜎2 exp (−𝑥2 + 𝑦2

2𝜎2) . (2.1)

In the discrete setting where the image consists of a grid of pixels, the Gaussian
blur amounts to calculating each pixel in the output image as a weighted average
of its neighboring pixels in the input image.

The Gaussian function happens to be the fundamental solution of the heat
equation 𝜕𝑡𝑢 = Δ𝑢. Convolving 𝐾𝜎(𝑥, 𝑦) with the original image 𝑓 is therefore
equivalent to solving the heat equation with 𝑓 as initial value, until some time
𝑇 > 0 depending on 𝜎. Boundary conditions have to be specified of course, and
one common choice is to symmetrically extend the image in 𝑥 and 𝑦 directions,
which corresponds to zero flux boundary conditions.

By basic Fourier analysis it is possible to show that the Gaussian filter is a
low-pass filter which attenuates high frequencies. Further theory can be found in
Weickert’s book on anisotropic diffusion [4].

The main concern with the Gaussian filter is that it will, in addition to smooth-
ing out possible noise, remove details from the image, which motivates the next
set of methods, where the amount of diffusion can vary between different parts of
the image.

2.1.1 Non-linear diffusion filtering
In the theory of the heat equation one can introduce a thermal diffusivity 𝛼 such
that the equation becomes

{ 𝜕𝑡𝑢 = div (𝛼(∇𝑢)∇𝑢),
𝑢|𝑡=0 = 𝑓. (2.2)

The thermal diffusivity 𝛼(∇𝑢) = 𝛼(𝑥, ∇𝑢) is material dependent, and can also
vary throughout the object. It specifies how well heat travels through the specific
point in the object. We can make use of this in the image restoration context by
specifying different diffusivity in different parts of the image, in an effort to reduce
noise without loosing image detail. Optimally, we would like there to be a lot of

2.1. DIFFUSION FILTERING 5

diffusion in smooth parts of the image, and not so much in areas with a lot of
details.

One much-studied non-linear diffusion equation is the Perona–Malik equation

𝜕𝑡𝑢 = div (∇𝑢
1 + |∇𝑢|2

𝜆2

) . (2.3)

The thermal diffusivity 𝛼(∇𝑢) = (1 + |∇𝑢|2/𝜆2)−1 varies from 1 in smooth areas to
0 as the norm of the gradient |∇𝑢| grows.

This particular form of the thermal diffusivity has been shown to be related
to how brightness is perceived by the human visual system. The model has some
theoretical problems related to well-posedness, for more information see [4].

A different kind of non-linear diffusion model is the total variation flow which
can be formulated as

𝜕𝑡𝑢 = div ∇𝑢
|∇𝑢|, (2.4)

where the diffusivity has a similar effect of reducing the diffusion in areas of high
variation. As the name suggests, this model can be related to the variational total
variation formulation presented later. One forward Euler time-step in the solution
of this partial differential equation corresponds to the Euler–Lagrange equation of
the variational formulation.

Note that we follow Weickert’s terminology when it comes to the distinction
between non-linear and anisotropic diffusion methods. The Perona–Malik equa-
tion, and other diffusion equations with non-homogenous diffusivities, are often by
others called anisotropic, as the diffusivity depends on the location. We will name
these methods non-linear and spare the anisotropy term for the “real” anisotropic
methods. These are methods where the diffusivity is a tensor, and thus both
location and direction dependent.

2.1.2 Anisotropic diffusion
The diffusivity is made directionally dependent by introducing a diffusion tensor
𝐴(𝑢) such that the initial boundary value problem becomes

⎧{
⎨{⎩

𝜕𝑡𝑢 = div (𝐴(𝑢)∇𝑢) on Ω × (0, ∞),
𝑢|𝑡=0 = 𝑓 on Ω,

𝐴(𝑢)∇𝑢 ⋅ 𝜈 = 0 on 𝜕Ω × (0, ∞),
(2.5)

where 𝜈 is the outer normal of Ω. The tensor 𝐴(𝑢) is constructed such as to
diminish the effect of ∇𝑢 across what we believe to be edges in the image. This

6 CHAPTER 2. METHODS IN IMAGE RESTORATION

way, there will also be less diffusion through these edges. Weickert [4] suggests
constructing 𝐴(𝑢) based on the edge estimator ∇𝑢𝜎 where

𝑢𝜎 ∶= 𝐾𝜎 ∗ �̃� (2.6)

and �̃� is an extension of 𝑢 from Ω to ℝ2 made by symmetrically extending 𝑢 across
the boundary of Ω. Assuming we are at an edge in the image, the direction of ∇𝑢𝜎
should be perpendicular to the edge, while its magnitude will provide information
on the steepness of the edge.

To extract this information, and also to identify features on a larger scale, the
structure tensor is introduced

𝑆𝜌(𝑥) ∶= 𝐾𝜌 ∗ (∇𝑢𝜎 ⊗ ∇𝑢𝜎), (2.7)

where the convolution with the Gaussian function 𝐾𝜌 is done component-wise.
The anisotropy tensor 𝐴(𝑢) can then be constructed based on the eigenvectors
and eigenvalues of 𝑆𝜌(𝑥). The structure tensor and its properties will be discussed
further when we introduce our anisotropic total variation functional.

Assuming some smoothness, symmetry and uniform positive definiteness on
𝐴(𝑢) one can prove well-posedness, regularity and an extremum principle of the
problem (2.5) as done in [4].

However, even if the diffusivity tensor was introduced to reduce the amount of
smoothing across edges, the solution of (2.5) will still be infinitely differentiable
[4], i.e. 𝑢(𝑇) ∈ 𝐶∞(Ω) for 𝑇 > 0. Thus there are no real discontinuities, and no
real edges in the solution.

Further, the anisotropic diffusion may introduce structure based on noise, when
there really was no structure to begin with. This is a problem we aim to avoid in
our anisotropic total variation method.

2.2 Total variation
Total variation was initially introduced to the field of image restoration by Rudin,
Osher and Fatemi in [5] and is usually formulated as a minimization problem

min
𝑢∈𝐿𝑝(Ω)

𝐹(𝑢),

𝐹(𝑢) = ∫
Ω

|𝑢 − 𝑓|𝑝 𝑑𝑥
⏟⏟⏟⏟⏟⏟⏟

fidelity term

+ 𝛽 ∫
Ω

|∇𝑢| 𝑑𝑥
⏟⏟⏟⏟⏟

regularization term

, (2.8)

where 𝑝 is normally taken to be 1 or 2. The fidelity term penalizes images 𝑢 that
are far from the original image 𝑓 . The regularization term is the total variation

2.2. TOTAL VARIATION 7

of the image, and minimizing it will reduce the variation and thus regularize the
image. The 𝛽 parameter controls the strength of the regularization. Note that
𝑢 = 𝑓 is a minimizer of the fidelity term, while a constant image 𝑢 = 𝑐 is a
minimizer of the regularization term.

As this restoration method is the one which will be extended later in this
thesis, we will look a little bit more deeply into the background and the numerical
methods relating to it.

Since we do not only want to consider differentiable images 𝑢 ∈ 𝐶1(Ω) for
which the gradient exists, we introduce the total variation using the distributional
derivative.

Definition 2.1 (Total variation). Given a function 𝑢 ∈ 𝐿1(Ω), the total vari-
ation of 𝑢, often written ∫Ω |𝐷𝑢| 𝑑𝑥, where the 𝐷 is the gradient taken in the
distributional sense, is

TV(𝑢) = ∫
Ω

|𝐷𝑢| 𝑑𝑥 = sup {∫
Ω

𝑢 ⋅ div 𝜑 𝑑𝑥 ∶ 𝜑 ∈ 𝐶∞
𝑐 (Ω, ℝ2) , ‖𝜑‖𝐿∞(Ω) ≤ 1} .

(2.9)
The test functions 𝜑 are taken from 𝐶∞

𝑐 (Ω, ℝ2), the space of smooth functions
from Ω to ℝ2 with compact support in Ω.

Note that since Ω is open and bounded, the test functions 𝜑 vanish on the
boundary of Ω. Thus no variation is measured at the boundary.

As we are searching for an image with low total variation, it is useful to intro-
duce the space of functions of bounded variation.

Definition 2.2 (Functions of bounded variation). The space of functions of bounded
variation BV(Ω) is the space of functions 𝑢 ∈ 𝐿1(Ω) for which the total variation
is finite, i.e.,

BV(Ω) = {𝑢 ∈ 𝐿1(Ω) ∶ TV(𝑢) < ∞} . (2.10)

Our optimization problem has thus become

min
𝑢∈BV(Ω)

∫
Ω

|𝑢 − 𝑣|𝑝 𝑑𝑥 + 𝛽 TV(𝑢). (2.11)

As with any restoration method, the total variation method has its strengths
and weaknesses. Its main strength is its ability to recover edges in the input image.
The total variation of a section only takes the absolute change into account, and
does not favor gradual changes like the diffusion methods.

There is also a theoretical result stating that the set of edges in the solution
𝑢 is contained in the set of edges in the original image 𝑓 , thus no new edges are
created [6]. However, in the presence of noise, the method may introduce or rather

8 CHAPTER 2. METHODS IN IMAGE RESTORATION

(a) Noisy gradient (b) Total variation restoration

Figure 2.1: Although the original gradient was smooth, the total variation
method manages to find structure in the noise, and create edges in the
restored image.

Figure 2.2: A fingerprint heavily regularized using the total variation
method. The originally white and black ridges have been brought closer in
value, to reduce the total variation.

“find” new edges that were not in the original image, since flat sections of zero
variation are encouraged by the functional. This effect is called the stair-casing
effect, and can be seen in Figure 2.1 where a noisy gradient has been restored using
the total variation method.

Fine details, thin objects and corners may suffer from contrast loss since bring-
ing them closer to their surroundings reduces the total variation. An example of
this is shown in Figure 2.2, where a not particularly noisy fingerprint image has
been strongly regularized. The original black and white levels have been brought
closer to yield a lower total variation in the regularized image.

2.2. TOTAL VARIATION 9

2.2.1 Numerical methods
See [7] for an overview of some of the numerical methods relating to total vari-
ation image restoration. Amongst others it describes some dual and primal-dual
methods, as well as the graph cut approach we take in this thesis.

Graph cut approach

Using graph cuts is the approach we will be taking later when considering the
anisotropic total variation regularization, and it is therefore valuable to briefly
look into how graph cuts are used in the case of regular total variation.

A graph cut is a set of edges that when removed will separate the graph into
two disconnected parts. A minimum cut is a cut such that the sum of the weight
of the edges in the cut is minimal. It has been shown that for some discrete func-
tionals, it is possible to construct graphs for which the minimum cuts correspond
to minimizers of the functional.

In the discrete setting our image consists of pixels, and is represented by a
function 𝑢 ∶ 𝒢 → 𝒫 where 𝒢 is a regular grid over Ω, and 𝒫 = {0, … , 𝐿 − 1} is the
discrete set of pixel values, or levels. We denote the value in pixel 𝑥 as 𝑢(𝑥) = 𝑢𝑥.

For an image 𝑢 and a level 𝜆 we denote the level set by {𝑢 > 𝜆}, defined as the
set {𝑥 ∈ Ω ∶ 𝑢𝑥 > 𝜆}. The thresholded image 𝑢𝜆, an indicator function, is then
defined as

𝑢𝜆 = 𝜒𝑢>𝜆. (2.12)
Here, 𝜒𝐸 signifies the characteristic function of the set 𝐸, the function which is
equal to one in every point in 𝐸, and zero elsewhere.

The idea of the graph cut approach is to decompose the minimization problem
into one minimization problem for each level of the image, and then solve them
separately before combining the results.

Through careful manipulation of the continuous functional in (2.11) it is pos-
sible to obtain a discrete functional decomposed as a sum over all the level values
on the form

𝐹(𝑢) =
𝐿−2
∑
𝜆=0

∑
𝑥

𝐹 𝑥
𝜆 (𝑢𝜆

𝑥) + 𝛽
𝐿−2
∑
𝜆=0

∑
(𝑥,𝑦)

𝐹 𝑥,𝑦(𝑢𝜆
𝑥, 𝑢𝜆

𝑦) =∶
𝐿−2
∑
𝜆=0

𝐹𝜆(𝑢𝜆) (2.13)

where the sum over (𝑥, 𝑦) is over all pixel pairs (𝑥, 𝑦) in a neighbor relation, i.e.
pixels that are “close” to each other. The actual form of the functional, and the
steps to construct it will be presented later.

The graph cut we find will for each level 𝜆 give us the thresholded image 𝑢𝜆,
and they can then be combined to form the complete image 𝑢.

When constructing the graph used to find the thresholded image 𝑢𝜆, we have
two special vertices, one representing the set {𝑢 > 𝜆}, and one which represents

10 CHAPTER 2. METHODS IN IMAGE RESTORATION

the set {𝑢 ≤ 𝜆}. The pixels are then connected to these vertices with a weight
representing how strongly they are related to the corresponding set. This weight
will be based on the value of 𝐹 𝑥

𝜆 .
Additionally there are connections between pixels in a neighborhood relation,

representing the energy 𝐹 𝑥,𝑦. Thus when finding a cut, we partition the pixels
into the sets {𝑢 > 𝜆} and {𝑢 ≤ 𝜆}. And if in addition the cut is minimal, we
know that the edges cut have minimal weight, and can prove that the 𝑢𝜆 found
minimizes the functional in (2.13).

Chapter 3
Continuous formulation

In the previous chapter we saw that there are many different approaches to the
image restoration problem, all with their own strengths and weaknesses. The
method considered in this thesis is an anisotropic total variation formulation, and
the aim is to keep the strengths of the anisotropic diffusion and total variation
methods, while eliminating some of their weaknesses.

This chapter will be devoted to the continuous formulation of the method. We
will look at the functional we want to minimize and its different forms, and briefly
discuss its well-posedness. Through the anisotropic coarea formula, the anisotropic
total variation is rewritten as an integral of the perimeter of all the level sets of
the image.

Following that, the anisotropic Cauchy–Crofton formula is introduced to make
it feasible to calculate the perimeter of these level sets. All of this leads up to the
discretization of our functional in the next chapter.

3.1 Anisotropic total variation
The method considered will build on the total variation regularization method
of Section 2.2. From anisotropic diffusion in Section 2.1.2 we borrow the idea of
making the regularization in each point directionally dependent. We introduce the
anisotropic total variation

TV𝐴(𝑢) = ∫
Ω

√∇𝑢(𝑥)𝑇 𝐴(𝑥)∇𝑢(𝑥) 𝑑𝑥 (3.1)

for all 𝑢 ∈ 𝐶1(Ω). We assume here that 𝐴(𝑥) is continuous and positive definite,
and we will later need the eigenvalues of 𝐴(𝑥) to be uniformly bounded below and
above. If 𝐴(𝑥) is the identity matrix we get the regular total variation found in

11

12 CHAPTER 3. CONTINUOUS FORMULATION

(2.8). When minimizing the regular total variation, we will also try to reduce the
variation over known edges in the image. This can lead to unwanted contrast loss,
especially in fine details. By controlling 𝐴(𝑥) such that the contribution of ∇𝑢(𝑥)
is reduced across known edges, we hope to retain the regularization properties of
the original method while reducing this contrast loss. If the variation across an
edge is “ignored” by the functional, there is no gain in reducing the height of the
edge as before.

Note that 𝑢(𝑥) and 𝐴(𝑥) are always dependent on the position in the image 𝑥,
but we will sometimes drop the 𝑥, when the intended meaning is clear.

As we will not always be working with differentiable images, we extend the
definition of the total variation functional. Being symmetric positive definite, the
matrix 𝐴 can be factored into two symmetric matrices as 𝐴 = 𝐴1/2𝐴1/2. We can
then write

TV𝐴(𝑢) = ∫
Ω

∣𝐴1/2∇𝑢∣ 𝑑𝑥

= sup
|𝜉(𝑥)|≤1

∫
Ω

(𝐴1/2∇𝑢)𝑇 𝜉 𝑑𝑥

= sup
|𝜉(𝑥)|≤1

∫
Ω

∇𝑢 ⋅ 𝐴1/2𝜉 𝑑𝑥

= sup
|𝜉(𝑥)|≤1

∫
Ω

𝑢 div(𝐴1/2𝜉) 𝑑𝑥

= sup
𝜂𝑇 𝐴−1𝜂≤1

∫
Ω

𝑢 div 𝜂 𝑑𝑥,

(3.2)

where 𝜉 and 𝜂 = 𝐴1/2𝜉 are in 𝐶∞
𝑐 (Ω, ℝ2), the space of smooth vector fields with

compact support. In the following we define the norms ‖𝜉‖𝐴 = sup𝑥(𝜉𝑇 𝐴𝜉)1/2 and
‖𝜂‖∗

𝐴 = sup𝑥(𝜂𝑇 𝐴−1𝜂)1/2, and with that we present the formal definition of the
anisotropic total variation.

Definition 3.1 (Anisotropic total variation). For a function 𝑢 ∈ 𝐿2(Ω) and a con-
tinuous symmetric positive definite tensor 𝐴 ∶ Ω → ℝ2×2 we define the anisotropic
total variation

TV𝐴(𝑢) = sup {∫
Ω

𝑢 div 𝜉 𝑑𝑥 ∶ 𝜉 ∈ 𝐶∞
𝑐 (Ω, ℝ2), ‖𝜉‖∗

𝐴 ≤ 1} . (3.3)

With this extended definition, we have arrived at a minimization problem where
we seek to find a minimizer of the functional

𝐹(𝑢) = ∫
Ω

(𝑢 − 𝑓)2 𝑑𝑥 + 𝛽 TV𝐴(𝑢). (3.4)

3.1. ANISOTROPIC TOTAL VARIATION 13

Figure 3.1: A noisy fingerprint on the left, and the largest eigenvalue of the
structure tensor is |∇𝑓𝜎(𝑥)|2 on the left, which—as we can see—functions
as an edge detector.

Similar functionals have been considered in [8] and [9]. The question is now how
to construct the anisotropy tensor 𝐴(𝑥) to get the improvements we hope for, and
how the introduction of the tensor affects our numerical solution method.

3.1.1 Anisotropy tensor
There are many possible choices for the anisotropy tensor 𝐴(𝑥). Our constraints
are that we have assumed it to be continuous and symmetric positive definite,
and we have some wishes for its properties. We would first and foremost like it to
down-weight ∇𝑢 in (3.1) across true edges, while maintaining normal regularization
properties in smooth sections.

By true edges we mean that that we do not want the tensor to be sensitive to
noise in the image, and thus find edges where there are none, so we somehow want
to be sure about the edges we find.

Edges can be found in many different ways, but as suggested by Weickert in his
book on Anisotropic Diffusion [4], and briefly mentioned in Section 2.1.2, a good
starting point is the edge detector ∇𝑓𝜎. The image is smoothed by a Gaussian
filter as described in Section 2.1: 𝑓𝜎 = 𝐾𝜎 ∗ ̃𝑓 , where ̃𝑓 is the symmetric extension
of the initial image 𝑓 in ℝ2. The smoothing parameter 𝜎 is called the noise scale,
and it controls the scale at which details are considered to be noise.

As seen in Figure 3.1, the edge detector is fine for detecting edges, but it
can not give us information about larger structures, like corners and textures,

14 CHAPTER 3. CONTINUOUS FORMULATION

which is why we introduce the structure tensor 𝑆𝜌(𝑥). First consider the tensor
𝑆0(𝑥) = ∇𝑓𝜎(𝑥) ⊗ ∇𝑓𝜎(𝑥). It is symmetric positive semi-definite, and obviously
contains no more information than the edge detector itself. Its eigenvalues are
𝜆1 = |∇𝑓𝜎(𝑥)|2 and 𝜆2 = 0 with corresponding eigenvectors 𝑣1 and 𝑣2 parallel
and perpendicular to ∇𝑓𝜎(𝑥) respectively.

To detect features in a neighborhood around the point 𝑥, such as corners,
curved edges and coherent structures we introduce the component-wise convolution
with 𝐾𝜌 such that

𝑆𝜌(𝑥) ∶= 𝐾𝜌 ∗ (∇𝑓𝜎(𝑥) ⊗ ∇𝑓𝜎(𝑥))(𝑥). (3.5)

The parameter 𝜌, called the integration scale, controls the size of the neighborhood
which affects the structure tensor. Thus it defines the size of the structures we
want our anisotropy tensor to be sensitive to.

The smoothed tensor 𝑆𝜌(𝑥) can easily be verified to be symmetric positive
semi-definite, just like 𝑆0(𝑥). In addition, when 𝜌 > 0, the elements of 𝑆𝜌 are
smooth maps from Ω to ℝ.

We order the two real eigenvalues such that 𝜆1 ≥ 𝜆2 and denote the correspond-
ing eigenvectors 𝑣1 and 𝑣2. From the characteristic polynomial of 𝑆𝜌(𝑥) = (𝑠11 𝑠12𝑠12 𝑠22)
we obtain a closed form expression for the eigenvalues

𝜆 = 1
2 (𝑠11 + 𝑠22 ± √(𝑠11 − 𝑠22)2 + 4𝑠2

12) . (3.6)

The vector 𝑣1 will then indicate the direction of most variation in the neighbor-
hood. An edge will give 𝜆1 ≫ 𝜆2 ≈ 0, while smooth areas will give 𝜆1 ≈ 𝜆2 ≈ 0.
In corners we have variation in the direction of 𝑣1 but also perpendicular to 𝑣1,
so we will have 𝜆1 ≈ 𝜆2 ≫ 0. Thus the quantity (𝜆1 − 𝜆2)2 will be large around
edges and small in smooth or non-coherent areas.

To extract this information from the structure tensor, we decompose it as

𝑆𝜌(𝑥) = 𝑈(𝑥)Λ(𝑥)𝑈(𝑥)𝑇 , (3.7)

where
Λ(𝑥) = (𝜆1 0

0 𝜆2
) (3.8)

has the eigenvalues 𝜆1 ≥ 𝜆2 on its diagonal, while 𝑈(𝑥) is a rotation matrix and
has the eigenvectors of 𝑆𝜌(𝑥) as its columns. From this we construct a new matrix
𝐴(𝑥) = 𝑈(𝑥)Σ(𝑥)𝑈(𝑥)𝑇 where

Σ(𝑥) = (𝜎1 0
0 𝜎2

) . (3.9)

3.1. ANISOTROPIC TOTAL VARIATION 15

..

𝜆1

.

𝜆2

(a) The structure tensor 𝑆𝜌.
..

1

.

𝜎1

(b) The anisotropy tensor 𝐴.

Figure 3.2: An edge with the structure and anisotropy tensors visualized
using their eigenvectors and eigenvalues.

and for 𝜎1 and 𝜎2 we choose

𝜎1 = (1 + (𝜆1 − 𝜆2)2

𝜔2)
−1

,

𝜎2 = 1.
(3.10)

Thus the eigenvectors of 𝐴(𝑥) and 𝑆𝜌(𝑥) are equal, while the eigenvalues are
different. A visualization of the two tensors can be seen in Figure 3.2 where the
two tensors are shown at an edge in the image.

In smooth areas, 𝜎1 ≈ 1 and 𝐴(𝑥) will be close to the identity matrix. At or
around edges, 𝜎1, which corresponds to the eigenvector perpendicular to the edge,
will be small.

Around corners 𝐴(𝑥) will be close to the identity matrix, which gives regu-
larization similar to smooth areas. This is one possible down-side of this tensor
choice, as rounded corners may occur.

The parameter 𝜔 controls the amount of anisotropy in the method, such that
if it is very large we are left with the identity matrix and our method becomes the
regular total variation method. Note also that changing the parameter 𝜔 implicitly
affects the amount of regularization applied. For an image 𝑢, decreasing 𝜔 will, all
else being equal, decrease the lowest eigenvalue of 𝐴(𝑥) and in turn decrease the
anisotropic total variation TV𝐴(𝑢).

For the case where 𝜆1 = 𝜆2, the 𝑈(𝑥) in our decomposition is not well-defined.
This is not a problem however, since Σ(𝑥) will be the identity matrix, so any
orthogonal matrix will suffice for 𝑈(𝑥).

Note that the eigenvalues of 𝑆𝜌 are continuous, and so are the eigenvectors
(ignoring their sign) except possibly when 𝜆1 = 𝜆2. Thus 𝐴 is also continuous
except possibly in these points. When 𝜆1 = 𝜆2 however, the eigenvalues 𝜎1 and
𝜎2 of 𝐴 will both be 1, and 𝐴 is the identity matrix. Thus we can argue that if
𝑆𝜌(𝑥) → 𝜆𝐼 then 𝐴(𝑥) → 𝐼 and 𝐴 is continuous in all of Ω.

16 CHAPTER 3. CONTINUOUS FORMULATION

See [10] for a different tensor construction, made to enhance flow structures in
the image, relevant in for example fingerprint analysis.

3.2 Well-posedness
The theory of existence and uniqueness for these kinds of variational methods is
a minefield of more or less subtle problems. Even if we restrict ourselves to a nice
space such as 𝐿2(Ω) we will at some point run into problems. The discussion here
is not meant to give the most rigorous background, but rather an overview of what
needs to be shown. Some problems will be worked around, while others will be
skipped with a reference to further theory.

The basic things we ask of our functional

𝐹(𝑢) = ∫
Ω

(𝑢 − 𝑓)2 + 𝛽 TV𝐴(𝑢) (3.11)

to have a well-posed problem are lower semi-continuity and coercivity for existence,
and convexity for uniqueness. We restrict ourself to 𝐿2(Ω) which makes sense with
our fidelity term, assuming that 𝑓 ∈ 𝐿2(Ω).

We consider the weak topology, as it will allow us to arrive at an existence
result relatively easily. We say that a sequence 𝑓𝑛 in 𝐿2(Ω) converges weakly to 𝑓
if

lim
𝑛→∞

∫
Ω

𝑓𝑛 𝜉 𝑑𝑥 = ∫
Ω

𝑓 𝜉 𝑑𝑥 (3.12)

for all 𝜉 ∈ 𝐿2(Ω) and we write 𝑓𝑛 ⇀ 𝑓 . A weakly convergent sequence is a sequence
that converges in the weak topology.

3.2.1 Convexity
We start with convexity as it is the easiest to show. Being quadratic, the fidelity
term of our functional

∫
Ω

(𝑢 − 𝑓)2 𝑑𝑥 (3.13)

is obviously strictly convex. This can be shown by expanding and rearranging the
strict convexity condition

∫
Ω

(𝜆𝑢1 + (1 − 𝜆)𝑢2 − 𝑓)2 𝑑𝑥 < 𝜆 ∫
Ω

(𝑢1 − 𝑓)2 𝑑𝑥 + (1 − 𝜆) ∫
Ω

(𝑢2 − 𝑓)2 𝑑𝑥 (3.14)

to obtain that it is equivalent to

− 𝜆(1 − 𝜆) ∫
Ω

(𝑢1 − 𝑢2)2 𝑑𝑥 < 0 (3.15)

3.2. WELL-POSEDNESS 17

.. 𝑥..

Figure 3.3: A lower semi-continuous function 𝑓 ∶ ℝ → ℝ can have
discontinuities, but for a convergent sequence 𝑥𝑘 → 𝑥 we always have
𝑓(𝑥) ≤ lim inf𝑘→∞ 𝑓(𝑥𝑘).

which is true for 0 < 𝜆 < 1 and 𝑢1 ≠ 𝑢2.
The anisotropic total variation

TV𝐴(𝑢) = sup
‖𝜉‖∗

𝐴≤1
∫

Ω
𝑢 div 𝜉 𝑑𝑥 (3.16)

can be thought of as—and has the properties of—a semi-norm, and is therefore
convex. The sum of the fidelity and regularization terms is thus strictly convex,
which, given the existence of a minimizer, implies uniqueness.

3.2.2 Coercivity
Coercivity relates to how the functional behaves when the norm of the image
𝑢 tends to infinity. What we need in order to conclude with existence is weak
sequential coercivity. Thus we need all level sets 𝐹 𝛼 = {𝑢 ∈ 𝐿2(Ω) ∶ 𝐹(𝑢) ≤ 𝛼} to
be weakly sequentially pre-compact, meaning that all sequences in the set contain
a subsequence weakly converging to an element of the closure of the set.

It is obvious from the fidelity term that for some fixed 𝑓 ∈ 𝐿2(Ω), if ‖𝑢‖𝐿2 → ∞
then 𝐹(𝑢) → ∞. This implies that all the level sets 𝐹 𝛼 are bounded. Since 𝐿2(Ω)
is a Hilbert space all bounded sequences contain a weakly convergent subsequence.
Thus all the level sets 𝐹 𝛼 are weakly sequentially pre-compact.

3.2.3 Lower semi-continuity
The lower semi-continuity is the most tricky part, and this is where we will take
some shortcuts. Lower semi-continuity for a functional 𝐹 at a point 𝑢 means
that at points 𝑢𝜖 close to 𝑢, the functional takes values either close to or above
𝐹(𝑢). More specifically, for every sequence 𝑢𝑘 converging to 𝑢, we have 𝐹(𝑢) ≤
lim inf𝑘 𝐹(𝑢𝑘). For a function 𝑓 ∶ ℝ → ℝ this can be visualized as in Figure 3.3.

18 CHAPTER 3. CONTINUOUS FORMULATION

Since our space 𝐿2(Ω) is of infinite dimensions things become a little prob-
lematic here. The problem lies in the fact that a functional which is continuous
with respect to sequences is not necessarily continuous with respect to the under-
lying topology. In other words, in these spaces, there can be a difference between
sequential continuity and topological continuity. Topological continuity implies
sequential continuity, but the converse does not hold. One way to get around this
would be to consider topological nets, an extension of sequences, but for simplic-
ity, and because it might not add much to the understanding of the restoration
method, we will stick to proving sequential lower semi-continuity and referring to
further theory. For further reading on the theory of sequential versus topological
continuity see for example Megginson’s book on Banach space theory [11].

The mapping 𝑢 ↦ ∫Ω 𝑢𝜉 𝑑𝑥 is weakly continuous for all 𝜉 ∈ 𝐿2(Ω). Note that
when we write weakly continuous it is not a weaker version of continuity, but rather
continuity in the weak topology, and the same goes for weak lower semi-continuity.

Before arguing that our own functional is sequentially weakly lower semi-
continuous, we present a needed result.

Lemma 3.2. Assume that the functional 𝐹 ∶ 𝐿2(Ω) → ℝ is defined by

𝐹 = sup
𝑖

𝐹𝑖 (3.17)

where all the 𝐹𝑖 are sequentially weakly lower semi-continuous, then 𝐹 is sequen-
tially weakly lower semi-continuous, meaning that for any sequence 𝑢𝑘 ⇀ 𝑢 we
have 𝐹(𝑢) ≤ lim inf𝑘 𝐹(𝑢𝑘).

Proof. For any sequence 𝑢𝑘 ⇀ 𝑢 in 𝐿2(Ω) we have

𝐹(𝑢) = sup
𝑖

𝐹𝑖(𝑢) ≤ sup
𝑖

lim inf
𝑘→∞

𝐹𝑖(𝑢𝑘) (3.18)

from the sequential weak lower semi-continuity of 𝐹𝑖. Using that lim inf𝑘→∞ 𝑢𝑘 =
sup𝑘 inf 𝑙≥𝑘 𝑢𝑙, we obtain

𝐹(𝑢) ≤ sup
𝑖

sup
𝑘

inf
𝑙≥𝑘

𝐹𝑖(𝑢𝑙)

= sup
𝑘

sup
𝑖

inf
𝑙≥𝑘

𝐹𝑖(𝑢𝑙)

≤ sup
𝑘

inf
𝑙≥𝑘

sup
𝑖

𝐹𝑖(𝑢𝑙)

= lim inf
𝑘→∞

𝐹(𝑢𝑘)

(3.19)

which proves that 𝐹 is sequentially weakly lower semi-continuous.

3.3. ANISOTROPIC COAREA FORMULA 19

In our functional in (3.4), we first consider the fidelity term, and rewrite it as
a supremum

∫
Ω

(𝑢 − 𝑓)2 𝑑𝑥 = sup {∫
Ω

(𝑢 − 𝑓)𝜉 𝑑𝑥 ∶ 𝜉 ∈ 𝐿2(Ω), |𝜉(𝑥)| ≤ |𝑢(𝑥) − 𝑓(𝑥)|} (3.20)

As the map 𝑢 ↦ ∫Ω(𝑢−𝑣)𝜉 𝑑𝑥 is continuous in the weak topology, the fidelity term
is thus a supremum of weakly continuous functionals, and is thus by Lemma 3.2
sequentially lower semi-continuous.

For the regularization term the approach is similar. With our extended defini-
tion from (3.3), we have

TV𝐴(𝑢) = sup {∫
Ω

𝑢 div 𝜉 𝑑𝑥 ∶ 𝜉 ∈ 𝐶∞
𝑐 (Ω, ℝ2), ‖𝜉‖∗

𝐴 ≤ 1} (3.21)

This is again a supremum of weakly continuous functionals. Thus the regulariza-
tion term is by Lemma 3.2 also sequentially weakly lower semi-continuous.

The sum of the two terms is trivially sequentially weakly lower semi-continuous
functional since

𝐹1(𝑢) + 𝐹2(𝑢) ≤ lim inf
𝑘→∞

𝐹1(𝑢𝑘) + lim inf
𝑘→∞

𝐹2(𝑢𝑘)

= lim
𝑘→∞

(inf
𝑙≥𝑘

𝐹1(𝑢𝑙) + inf
𝑙≥𝑘

𝐹2(𝑢𝑙))

≤ lim inf
𝑘→∞

(𝐹1(𝑢𝑘) + 𝐹2(𝑢𝑘)) ,

(3.22)

and thus our functional is sequentially weakly lower semi-continuous.
The usual ways of going from coercivity and lower semi-continuity to existence

do not work in infinite dimensions. But with sequential coercivity and sequential
lower semi-continuity in the weak topology we can conclude that we have existence
from [12, Theorem 5.1].

3.3 Anisotropic coarea formula
The anisotropic coarea formula we present here will allow us to write the an-
isotropic total variation as an integral over the levels of the image. For a similar
presentation of the regular coarea formula for all 𝑓 ∈ BV(Ω) see [13].

First we define the thresholded image at level 𝑠.
Definition 3.3 (Thresholded image). The thresholded image at level 𝑠 is the
function

𝑢𝑠(𝑥) = {1 if 𝑢(𝑥) > 𝑠,
0 otherwise.

(3.23)

20 CHAPTER 3. CONTINUOUS FORMULATION

This will be used throughout the rest of the thesis. Note that given the thresh-
olded image for every level, we are able to reconstruct the image as

𝑢(𝑥) = sup {𝑠 ∶ 𝑢𝑠(𝑥) = 1} . (3.24)
The thresholded image definition also allows us to write a non-negative image
𝑢 ≥ 0 as an integral over all the layers

𝑢(𝑥) = ∫
∞

0
𝑢𝑠(𝑥)𝑑𝑠. (3.25)

Note that (3.25) only holds for non-negative images, which complicates the proof
of the anisotropic coarea formula a little.
Theorem 3.4 (Anisotropic coarea formula). Given an image 𝑢 ∈ BV(Ω), the
anisotropic total variation can be written as an integral over all the levels

TV𝐴(𝑢) = ∫
∞

−∞
TV𝐴(𝑢𝑠)𝑑𝑠. (3.26)

For the proof we will avoid measure theory and follow a proof given in [9], but
first we will present a necessary result from measure theory.
Theorem 3.5 (Lebesgue’s Dominated Convergence theorem). Let {𝑓𝑛} be a se-
quence of real-valued measurable functions on a space 𝑆 with measure 𝑑𝜇 which
converges almost everywhere to a real-valued measurable function 𝑓. If there exists
an integrable function 𝑔 such that |𝑓𝑛| ≤ 𝑔 for all 𝑛, then 𝑓 is integrable and

lim
𝑛→∞

∫
𝑆

𝑓𝑛 𝑑𝜇 = ∫
𝑆

𝑓 𝑑𝜇. (3.27)

For a proof and further background on measure theory and Lebesgue integra-
tion theory see for example [14].

Proof of the anisotropic coarea formula. Assume that 𝑢 ∈ 𝐶1(Ω) ∩ BV(Ω). The
extension to all functions 𝑢 ∈ BV(Ω) will not be considered here, but for the case
of regular total variation see [15, Theorem 5.3.3].

Proof of upper bound. Assume that 𝑢 ≥ 0 such that the integral repre-
sentation in (3.25) holds, then inserting (3.25) into the extended total variation
definition in (3.3) gives

TV𝐴(𝑢) = sup
‖𝜉‖∗

𝐴≤1
∫

Ω
(∫

∞

0
𝑢𝑠𝑑𝑠) div 𝜉 𝑑𝑥 = sup

‖𝜉‖∗
𝐴≤1

∫
Ω

∫
∞

0
𝑢𝑠 div 𝜉 𝑑𝑠 𝑑𝑥

≤ ∫
∞

0
(sup

‖𝜉‖∗
𝐴≤1

∫
Ω

𝑢𝑠 div 𝜉 𝑑𝑥) 𝑑𝑠 = ∫
∞

0
TV𝐴(𝑢𝑠)𝑑𝑠.

(3.28)

3.3. ANISOTROPIC COAREA FORMULA 21

For 𝑢 ≤ 0 we use that TV𝐴(−𝑣) = TV𝐴(𝑣) and that TV𝐴(𝑐 + 𝑣) = TV𝐴(𝑣) for
any constant 𝑐. Note that −𝑢 ≥ 0 and that its thresholded image (−𝑢)𝑠 will be
exactly the opposite of 𝑢−𝑠, that is (−𝑢)𝑠 = 1 − 𝑢−𝑠. This allows us to show that

TV𝐴(𝑢) = TV𝐴(−𝑢) ≤ ∫
∞

0
TV𝐴((−𝑢)𝑟)𝑑𝑟 = ∫

∞

0
TV𝐴(1 − 𝑢−𝑟)𝑑𝑟

= ∫
∞

0
TV𝐴(𝑢−𝑟)𝑑𝑟 = ∫

0

−∞
TV𝐴(𝑢𝑠)𝑑𝑠.

(3.29)

Following from the supremum definition of the anisotropic total variation in (3.3),
we obtain the inequality

TV𝐴(𝑢1 + 𝑢2) = sup
‖𝜉‖∗

𝐴≤1
∫

Ω
(𝑢1 + 𝑢2) div 𝜉 𝑑𝑥

≤ sup
‖𝜉‖∗

𝐴≤1
∫

Ω
𝑢1 div 𝜉 𝑑𝑥 + sup

‖𝜉‖∗
𝐴≤1

∫
Ω

𝑢2 div 𝜉 𝑑𝑥

= TV𝐴(𝑢1) + TV𝐴(𝑢2).

(3.30)

Next, we write a general 𝑢 as a difference of two positive functions 𝑢 = 𝑢+ − 𝑢−
where 𝑢+ = max{𝑢, 0} and 𝑢− = − min{𝑢, 0}. Inserting (3.28) and (3.29) into
(3.30) we obtain

TV𝐴(𝑢) ≤ TV𝐴(𝑢−) + TV𝐴(𝑢+) = TV𝐴(−𝑢−) + TV𝐴(𝑢+)

≤ ∫
0

−∞
TV𝐴((−𝑢−)𝑠)𝑑𝑠 + ∫

∞

0
TV𝐴(𝑢𝑠

+)𝑑𝑠

= ∫
0

−∞
TV𝐴(𝑢𝑠)𝑑𝑠 + ∫

∞

0
TV𝐴(𝑢𝑠)𝑑𝑠 = ∫

∞

−∞
TV𝐴(𝑢𝑠)𝑑𝑠.

(3.31)

Note that 𝑢+ and 𝑢− will not be differentiable everywhere, but we did not use the
differentiability of 𝑢 in this part of the proof.

Proof of lower bound. Define the function

𝑚(𝑡) = ∫
{𝑥∈Ω∶𝑢(𝑥)≤𝑡}

‖∇𝑢‖𝐴 𝑑𝑥, (3.32)

and note that 𝑚(∞) = TV𝐴(𝑢) and 𝑚(−∞) = 0. Since 𝑚(𝑡) is non-decreasing
with 𝑡, we can apply the existence theorems of Lebesgue [16, Thm. 17.12, 18.14]
to conclude that 𝑚′(𝑡) exists almost everywhere and that the following inequality
holds:

∫
∞

−∞
𝑚′(𝑡)𝑑𝑡 ≤ 𝑚(∞) − 𝑚(−∞) = TV𝐴(𝑢). (3.33)

22 CHAPTER 3. CONTINUOUS FORMULATION

.. 𝑡..
𝑠

.
𝑠 + 𝑟

.

1

(a) 𝜂𝑟(𝑡)

.. 𝑡..
𝑠

.
𝑠 + 𝑟

(b) 𝜂′
𝑟(𝑡)

Figure 3.4: Visualization of the cut-off function 𝜂𝑟(𝑡) and its derivative.

Next, fix an 𝑠 ∈ ℝ and define the cut-off function

𝜂𝑟(𝑡) =
⎧{
⎨{⎩

0 if 𝑡 < 𝑠,
(𝑡 − 𝑠)/𝑟 if 𝑠 ≤ 𝑡 < 𝑠 + 𝑟,
1 if 𝑡 ≥ 𝑠 + 𝑟,

𝜂𝑟′(𝑡) =
⎧{
⎨{⎩

0 if 𝑡 < 𝑠,
1 if 𝑠 < 𝑡 < 𝑠 + 𝑟,
0 if 𝑡 > 𝑠 + 𝑟,

(3.34)

visualized in Figure 3.4. By composing the function 𝜂𝑟 with our image 𝑢 and using
Green’s formula, for example from [8, Corollary 9.32] we obtain

∫
Ω

−𝜂𝑟(𝑢) div 𝜉 𝑑𝑥 = ∫
Ω

𝜂𝑟′(𝑢)∇𝑢 ⋅ 𝜉 𝑑𝑥 = 1
𝑟 ∫

{𝑠<𝑢<𝑠+𝑟}
∇𝑢 ⋅ 𝜉 𝑑𝑥, (3.35)

for all vector fields 𝜉 ∈ 𝐶∞
𝑐 (Ω, ℝ2). The measure of {𝑥 ∶ 𝑢(𝑥) = 𝜆 and ∇𝑢(𝑥) ≠ 0}

is zero for all 𝜆 following from [13, Corollary I, Section 3.1.2], thus we can ignore
the sets {𝑢 = 𝑠} and {𝑢 = 𝑠 + 𝑟} in the integrals. Assuming that ‖𝜉‖∗

𝐴 ≤ 1 we
obtain from (3.32) and (3.35) that

𝑚(𝑠 + 𝑟) − 𝑚(𝑠)
𝑟 = 1

𝑟 ∫
{𝑠<𝑢≤𝑠+𝑟}

‖∇𝑢‖𝐴 𝑑𝑥

≥ 1
𝑟 ∫

{𝑠<𝑢≤𝑠+𝑟}
∇𝑢 ⋅ 𝜉 𝑑𝑥 = ∫

Ω
−𝜂𝑟(𝑢) div 𝜉 𝑑𝑥.

(3.36)

As the limit when 𝑟 → 0 of the left-hand side exists almost everywhere, suppose
it exists at 𝑠 ∈ ℝ. The integrand on the right-hand side −𝜂𝑟(𝑢) div 𝜉 approaches
−𝑢𝑠 div 𝜉 pointwise almost everywhere. We also have the bound |𝜂𝑟(𝑢) div 𝜉| ≤
|𝑢𝑠 div 𝜉| and know that 𝜉 ∈ 𝐶∞

𝑐 (Ω, ℝ2) is bounded following from the extreme
value theorem. Thus we can apply Lebesgue’s dominated convergence theorem,
giving that |𝑢𝑠 div 𝜉| is integrable and

∫
Ω

−𝜂𝑟(𝑢) div 𝜉 𝑑𝑥 → ∫
Ω

−𝑢𝑠 div 𝜉 𝑑𝑥 (3.37)

3.3. ANISOTROPIC COAREA FORMULA 23

From (3.36) we then obtain

𝑚′(𝑠) ≥ − ∫
Ω

𝑢𝑠 div 𝜉 𝑑𝑥. (3.38)

As this holds for any ‖𝜉‖∗
𝐴 ≤ 1, we get from the extended total variation definition

in (3.3) that 𝑚′(𝑠) ≥ TV𝐴(𝑢𝑠) almost everywhere and conclude using (3.33) that

TV𝐴(𝑢) ≥ ∫
∞

−∞
𝑚′(𝑡)𝑑𝑡 ≥ ∫

∞

−∞
TV𝐴(𝑢𝑠)𝑑𝑠. (3.39)

Combining the upper and lower bounds just proved, we have equality.

This coarea formula is our first step in transforming the anisotropic total vari-
ation into an easily discretizable expression. It allows us to consider each level 𝜆
separately when calculating the anisotropic total variation.

The anisotropic total variation of the thresholded images occurring in the
anisotropic coarea formula is very much related to the size of the boundary of
the level set, as the only variation in a characteristic function occurs at the bound-
ary of the set. This is why we introduce the following definition of the anisotropic
set perimeter.

Definition 3.6 (The anisotropic set perimeter). Given an anisotropy tensor 𝐴
the anisotropic perimeter of a set 𝑈 in Ω is defined as

Per𝐴(𝑈; Ω) = TV𝐴(𝜒𝑈). (3.40)

The anisotropic set perimeter is not like the regular set perimeter and does not
measure the length of the boundary of the set, but it can for sufficiently nice level
sets be calculated in the following way

Per𝐴({𝑢 > 𝑠}; Ω) = TV𝐴(𝑢𝑠)

= sup
‖𝜉‖∗

𝐴≤1
∫

Ω
𝑢𝑠 div 𝜉 𝑑𝑥

= sup
‖𝜉‖∗

𝐴≤1
∫

{𝑢>𝑠}
div 𝜉 𝑑𝑥

= sup
‖𝜉‖∗

𝐴≤1
∫

𝜕{𝑢>𝑠}
𝜈𝑠 ⋅ 𝜉 𝑑𝑡

= sup
‖𝜂‖≤1

∫
𝜕{𝑢>𝑠}

𝜈𝑠 ⋅ 𝐴1/2𝜂 𝑑𝑡

= ∫
𝜕{𝑢>𝑠}

√𝜈𝑠𝐴𝜈𝑠 𝑑𝑡.

(3.41)

24 CHAPTER 3. CONTINUOUS FORMULATION

.. 𝑥.

𝑦

.....

𝜌

.

𝜈

.
𝜙

Figure 3.5: The blue line is parametrized by the angle 𝜙 and the distance
from the origin to the line 𝜌, or alternatively, the pair (𝜈, 𝜌).

Here, 𝜈𝑠 is the unit exterior normal of the level set {𝑢 > 𝑠}. Note that because
of the compact support of 𝜉 in Definition 3.1, the parts of the boundary of 𝑈 that
overlap with the boundary of Ω will not be included in the perimeter.

Exterior normals and perimeters of level sets of any function 𝑢 ∈ BV(Ω) will
not be considered here, but can for the isotropic case be found in for example [15,
Section 5.4 and 5.5].

Using the anisotropic coarea formula and inserting the anisotropic perimeter
definition we transform the anisotropic total variation and are left with the problem
of minimizing the following functional

𝐹(𝑢) = ∫
Ω

(𝑢 − 𝑓)2 𝑑𝑥 + 𝛽 ∫
∞

−∞
Per𝐴({𝑢 > 𝜆}; Ω)𝑑𝜆. (3.42)

The transformation is motivated by our upcoming anisotropic Cauchy–Crofton in-
tegration formula, and the discretization, where an approximation of the perimeter
will be computed using a graph cut machinery.

3.4 Anisotropic Cauchy–Crofton formula
In the fields of integral geometry and geometric measure theory there are a number
of interesting integral formulas. Several of them fall in a category often referred
to as Cauchy–Crofton style formulas, and give ways to measure geometric objects
using the set of all lines in the plane. The formulas presented here will give a way
to measure the length of a curve by counting the times it intersects lines in the set
of all lines. The first formula will be for the isotropic case, and we will use it to
prove the anisotropic formula following it.

3.4. ANISOTROPIC CAUCHY–CROFTON FORMULA 25

We write ℒ for the set of all lines in the plane, and parametrize them as shown
in Figure 3.5. A line is parametrized by the angle 𝜙 ∈ [0, 2𝜋) of the normal going
to the origin, and the distance 𝜌 ∈ [0, ∞) from origin to the line. Sometimes
it is more convenient to consider a unit vector 𝜈 giving the direction of the line
instead of the angle parameter 𝜙. We denote a line by ℓ𝜙,𝜌 = ℓ𝜈,𝜌 where 𝜈 is a
unit vector along the line, i.e. 𝜈 = (− sin 𝜙, cos 𝜙)𝑇 . By defining the measure on
this set 𝑑ℒ = 𝑑𝜙 𝑑𝜌 we are ready to introduce the Cauchy–Crofton formula. Note
that the measure 𝑑ℒ is invariant under rotations.

Theorem 3.7 (The Euclidean Cauchy–Crofton formula). Given a differentiable
curve 𝐶 in ℝ2, the length of this curve |𝐶| is related to the set of lines ℒ as follows

∫
ℒ

#(ℓ𝜙,𝜌 ∩ 𝐶)𝑑ℒ(ℓ𝜙,𝜌) = 2 |𝐶| , (3.43)

where #(ℓ𝜙,𝜌 ∩ 𝐶) is the number of times the line ℓ𝜙,𝜌 intersects the curve 𝐶.

Proof. See [17, Theorem 3, Section 1-7].

If our space is equipped with a metric tensor 𝑀(𝑥) such that the inner product
of two vectors 𝑎 and 𝑏 in a point 𝑥 is calculated as ⟨𝑎, 𝑏⟩𝑀 = ⟨𝑎, 𝑀(𝑥)𝑏⟩, then the
length of a curve 𝛾 parametrized by some parameter 𝑡 becomes

|𝛾|𝑀 = ∫
𝛾

√⟨ ̇𝛾, 𝑀(𝛾(𝑡)) ̇𝛾⟩ 𝑑𝑡. (3.44)

We will now present and prove a Cauchy–Crofton formula in this case where our
domain is equipped with a metric tensor in each point. This elegant formula is
very useful when we later will discretize our perimeter calculation. The set of lines
ℒ is then discretized in a reasonable way, and the length of the curve 𝐶 can be
approximated by a sum over all these lines.

Theorem 3.8 (The anisotropic Cauchy–Crofton formula). Assume that our space
Ω is equipped with a continuous positive definite metric tensor 𝑀(𝑥), whose eigen-
values are bounded by 0 < 𝑘 ≤ 𝜆2 ≤ 𝜆1 ≤ 𝐾 < ∞ for all 𝑥 ∈ Ω. The Cauchy–
Crofton formula for a differentiable curve 𝐶 of finite length then becomes

|𝐶|𝑀 = ∫
ℒ

∑
𝑥∈ℓ𝜈,𝜌∩𝐶

det 𝑀(𝑥)
2 (𝜈𝑇 ⋅ 𝑀(𝑥) ⋅ 𝜈)3/2

𝑑ℒ(ℓ𝜈,𝜌). (3.45)

Proof of the anisotropic Cauchy–Crofton formula. Assume first that our space is
equipped with a constant metric tensor 𝑀 . The length of a curve in this space

26 CHAPTER 3. CONTINUOUS FORMULATION

can be calculated by transforming the curve and applying the Euclidean Cauchy–
Crofton formula

|𝐶|𝑀 = ∫
𝐶

√⟨ ̇𝐶, 𝑀 ̇𝐶⟩ 𝑑𝑡 = ∫
𝐶

√⟨𝑀 1/2 ̇𝐶, 𝑀 1/2 ̇𝐶⟩ = ∣𝑀 1/2𝐶∣ (3.46)

= ∫
ℒ

#(ℓ𝜙,𝜌 ∩ 𝑀 1/2𝐶) 𝑑ℒ(ℓ𝜙,𝜌) (3.47)

= ∫
ℒ

#(𝑀−1/2ℓ𝜙,𝜌 ∩ 𝐶)𝑑ℒ(ℓ𝜙,𝜌) (3.48)

= ∫
ℒ

#(𝑚𝜙,𝜌 ∩ 𝐶) ∣𝐽𝑀(ℓ𝜙,𝜌)∣ 𝑑ℒ(𝑚𝜙,𝜌). (3.49)

Here 𝐽𝑀(ℓ𝜙,𝜌) is the Jacobian of the coordinate transformation 𝐹 ∶ ℒ → ℒ, which
maps ℓ𝜙,𝜌 ↦ 𝑀 1/2ℓ𝜙,𝜌.

We will now compute the Jacobian 𝐽𝑀(ℓ𝜙,𝜌). As 𝑀 ∈ ℝ2×2 is symmetric,
so is 𝑀 1/2, and it admits a decomposition 𝑀 1/2 = 𝑈Σ𝑈𝑇 where the components
correspond to the following coordinate transformations

𝑈(ℓ𝜈,𝜌) = ℓ𝜙+𝜉,𝜌 = ℓ𝑈𝜈,𝜌 (3.50)
𝑈𝑇 (ℓ𝜈,𝜌) = ℓ𝜙−𝜉,𝜌 = ℓ𝑈𝑇 𝜈,𝜌 (3.51)

Σ = (𝜎1 0
0 𝜎2

) = (√𝜆1 0
0 √𝜆2

) (3.52)

As 𝑈 and 𝑈𝑇 correspond to rotations and our measure ℒ is invariant under rota-
tions, 𝑈 and 𝑈𝑇 do not have direct contributions to the Jacobian. They do however
affect the input angle of the operator Λ such that 𝐽𝑀(ℓ𝜙,𝜌) = 𝐽Σ2(𝑈𝑇 ℓ𝜙,𝜌). Thus
we will now compute 𝐽Σ2(ℓ𝜙,𝜌). Given a line

ℓ𝜙,𝜌 = (𝜌 ⋅ cos 𝜙
𝜌 ⋅ sin 𝜙) + ℝ (− sin 𝜙

cos 𝜙) , (3.53)

the operator Σ transforms it into

Σℓ𝜙,𝜌 = (𝜎1𝜌 ⋅ cos 𝜙
𝜎2𝜌 ⋅ sin 𝜙) + ℝ (−𝜎1 sin 𝜙

𝜎2 cos 𝜙) , (3.54)

which equals the line ℓ𝜃,𝜂 with

𝜃 = arctan (𝜎1
𝜎2

tan 𝜙) (3.55)

𝜂 = ⟨(𝜎1𝜌 ⋅ cos 𝜙
𝜎2𝜌 ⋅ sin 𝜙) , (cos 𝜃

sin 𝜃)⟩ = 𝜎1𝜌 ⋅ cos 𝜙 ⋅ cos 𝜃 + 𝜎2𝜌 ⋅ sin 𝜙 ⋅ sin 𝜃. (3.56)

3.4. ANISOTROPIC CAUCHY–CROFTON FORMULA 27

As 𝜕𝜌𝜃 = 0, the Jacobian becomes ∣𝐽Σ2(ℓ𝜙,𝜌)∣ = 𝜕𝜙𝜃 ⋅ 𝜕𝜌𝜂. Differentiation yields

𝜕𝜙𝜃 =
𝜎1𝜎2

sec2 𝜙
1 + 𝜎2

1
𝜎2

2
tan2 𝜙

= 𝜎1𝜎2
𝜎2

1 sin2 𝜙 + 𝜎2
2 cos2 𝜙, (3.57)

𝜕𝜌𝜂 = 𝜎1 cos 𝜙 ⋅ cos 𝜃 + 𝜎2 sin 𝜙 ⋅ sin 𝜃. (3.58)

In the expression for 𝜕𝜌𝜂 we insert 𝜃 from (3.55) and use that sin(arctan(𝑥)) =
𝑥/

√
1 + 𝑥2 and that cos(arctan(𝑥)) = 1/

√
1 + 𝑥2 to obtain

𝜕𝜌𝜂 =
𝜎1 cos 𝜙 + 𝜎2 sin 𝜙 𝜎1𝜎2

tan 𝜙
√1 + 𝜎2

1
𝜎2

2
tan2 𝜙

= 𝜎1𝜎2

√𝜎2
1 sin2 𝜙 + 𝜎2

2 cos2 𝜙
. (3.59)

If 𝜈 = (𝜈𝑥, 𝜈𝑦)𝑇 is a unit vector along the line ℓ𝜙,𝜌 = ℓ𝜈,𝜌 then

∣𝐽Σ2(ℓ𝜈,𝜌)∣ = 𝜎2
1𝜎2

2

(𝜎2
1 sin2 𝜙 + 𝜎2

2 cos2 𝜙)3/2
= 𝜎2

1𝜎2
2

(𝜎2
1𝜈2𝑥 + 𝜎2

2𝜈2𝑦)3/2
= det Σ2

(𝜈𝑇 ⋅ Σ2 ⋅ 𝜈)3/2
.

(3.60)
We are interested in the Jacobian of the whole transformation 𝐽Σ2(𝑈𝑇 ℓ𝜈,𝜌), so all
that is left to do is insert 𝑈𝑇 ℓ𝜈,𝜌 to obtain

∣𝐽𝑀(ℓ𝜈,𝜌)∣ = ∣𝐽Σ2(𝑈𝑇 ℓ𝜈,𝜌)∣ = det 𝑀
(𝜈𝑇 𝑈 ⋅ Σ2 ⋅ 𝑈𝑇 𝜈)3/2

= det 𝑀
(𝜈𝑇 ⋅ 𝑀 ⋅ 𝜈)3/2

(3.61)

We have now proved that for a constant metric tensor 𝑀 , the length of the differ-
entiable curve 𝐶 with regards to this tensor can be calculated as

|𝐶|𝑀 = ∫
𝐶

√⟨ ̇𝐶, 𝑀 ̇𝐶⟩ 𝑑𝑡 = ∫
ℒ

#(ℓ𝜈,𝜌 ∩ 𝐶) det 𝑀
(𝜈𝑇 ⋅ 𝑀 ⋅ 𝜈)3/2

𝑑ℒ(ℓ𝜈,𝜌). (3.62)

Further we argue that the similar formula in (3.45) holds for a non-constant but
continuous metric tensor 𝑀(𝑥). By partitioning the domain into disjoint sets 𝑈𝑖
such that Ω = ∪𝑖𝑈𝑖, we make a piecewise constant approximation 𝑀𝜋(𝑥) such
that if 𝑥 ∈ 𝑈𝑖 then 𝑀𝜋(𝑥) = 𝑀(𝑥𝑖) for some fixed 𝑥𝑖 ∈ 𝑈𝑖. We then approximate
(3.62) by

|𝐶|𝑀𝜋
= ∑

𝑖
∫

ℒ
#(ℓ𝜈,𝜌 ∩ 𝐶 ∩ 𝑈𝑖)𝑤𝑖(𝜈)𝑑ℒ(ℓ𝜈,𝜌) (3.63)

where 𝑤𝑖 is the weight-function used in the set 𝑈𝑖, that is,

𝑤𝑖(𝜈) = det 𝑀(𝑥𝑖)
(𝜈𝑇 ⋅ 𝑀(𝑥𝑖) ⋅ 𝜈)3/2

. (3.64)

28 CHAPTER 3. CONTINUOUS FORMULATION

We further simplify the approximation by introducing the global weight-function
𝑤𝜋(𝜈, 𝑥) which is equal to 𝑤𝑖(𝜈) when 𝑥 ∈ 𝑈𝑖. It can be written as

𝑤𝜋(𝜈, 𝑥) = det 𝑀𝜋(𝑥)
(𝜈𝑇 ⋅ 𝑀𝜋(𝑥) ⋅ 𝜈)3/2

. (3.65)

Using this weight in (3.63) we can get rid of the sum over the partition 𝑖 and form
a sum of all intersection point of 𝐶 and the line ℓ𝜈,𝜌 currently being integrated
over. The approximation becomes

|𝐶|𝑀𝜋
= ∑

𝑖
∫

ℒ
∑

𝑥∈ℓ𝜈,𝜌∩𝐶∩𝑈𝑖

𝑤𝜋(𝜈, 𝑥)𝑑ℒ(ℓ𝜈,𝜌)

= ∫
ℒ

∑
𝑥∈ℓ𝜈,𝜌∩𝐶

𝑤𝜋(𝜈, 𝑥)𝑑ℒ(ℓ𝜈,𝜌).
(3.66)

Now it only remains to show that the left- and right-hand side of (3.66) converges
to the left- and right-hand side of (3.45).

As our partition 𝜋 is refined, the weight 𝑤𝜋(𝑥) converges pointwise to the
continuously varying weight

𝑤(𝜈, 𝑥) = det 𝑀(𝑥)
(𝜈𝑇 ⋅ 𝑀(𝑥) ⋅ 𝜈)3/2

(3.67)

found in (3.45).
Recall from (3.44) that the left-hand side is calculated as

|𝐶|𝑀𝜋
= ∫

𝐶
∣ ̇𝐶(𝑡)∣

𝑀𝜋
𝑑𝑡 = ∫

𝐶
√ ̇𝐶(𝑡)𝑇 𝑀𝜋(𝐶(𝑡)) ̇𝐶(𝑡) 𝑑𝑡. (3.68)

We know that 𝑀𝜋(𝑥) converges pointwise to 𝑀(𝑥), and thus | ̇𝐶(𝑡)|𝑀𝜋
converges

pointwise to | ̇𝐶(𝑡)|𝑀 . We have assumed bounds on the eigenvalues of 𝑀(𝑥) such
that, according to the Rayleigh principle

𝐾 ≥ 𝜆1 = max
𝜉

𝜉𝑇 𝑀𝜋(𝑥)𝜉
𝜉𝑇 𝜉 (3.69)

and therefore we have the bound

𝜉𝑇 𝑀𝜋(𝑥)𝜉 ≤ 𝐾 ‖𝜉‖2 , ∀𝜉. (3.70)

Thus the integrand of (3.68) is bounded by 𝑔(𝑡) = (𝐾 ⋅ ̇𝐶(𝑡)𝑇 ̇𝐶(𝑡))1/2. We know
that 𝑔(𝑡) is integrable as its integral is exactly

√
𝐾 |𝐶| and we have assumed that

3.4. ANISOTROPIC CAUCHY–CROFTON FORMULA 29

the curve is of finite length. This means we can apply Lebesgue’s dominated
convergence theorem to see that |𝐶|𝑀𝜋

→ |𝐶|𝑀 .
We apply the same theorem to show that the right-hand side of (3.66) con-

verges. Recall the definition of 𝑤𝜋 in (3.65). The numerator is equal to 𝜎2
1𝜎2

2 =
𝜆1𝜆2 and is by assumption bounded from above by 𝐾2.

Next we need to bound 𝜈𝑇 𝑀𝜋(𝑥)𝜈 away from zero. According to the Rayleigh
principle

𝜆2 = min
‖𝜉‖=1

𝜉𝑇 𝑀𝜋(𝑥)𝜉 (3.71)

and thus 𝜈𝑇 𝑀𝜋(𝑥)𝜈 ≥ 𝜆2 ≥ 𝑘. The weight function 𝑤𝜋 is then bounded such that

∑
𝑥∈ℓ𝜈,𝜌∩𝐶

𝑤𝜋(𝜈, 𝑥) ≤ ∑
𝑥∈ℓ𝜈,𝜌∩𝐶

𝐾2

𝑘3/2
= 𝐾2

𝑘3/2
⋅ #(ℓ𝜈,𝜌 ∩ 𝐶) =∶ 𝑔(ℓ𝜈,𝜌). (3.72)

This is integrable following from the Euclidean Cauchy–Crofton formula in Theo-
rem 3.7 and the fact that we assumed 𝐶 to be of finite length:

∫
ℒ

𝑔(ℓ𝜈,𝜌)𝑑ℒ(ℓ𝜈,𝜌) = 𝐾2

𝑘3/2
|𝐶| < ∞. (3.73)

Thus we can apply the dominated convergence theorem again and conclude that

∫
ℒ

∑
𝑥∈ℓ𝜈,𝜌∩𝐶

𝑤𝜋(𝜈, 𝑥)𝑑ℒ(ℓ𝜈,𝜌) → ∫
ℒ

∑
𝑥∈ℓ𝜈,𝜌∩𝐶

𝑤(𝜈, 𝑥)𝑑ℒ(ℓ𝜈,𝜌) (3.74)

which—as both sides of the equality in (3.66) have been shown to converge—leaves
us with what we wanted to prove

|𝐶|𝑀 = ∫
ℒ

∑
𝑥∈ℓ𝜈,𝜌∩𝐶

det 𝑀(𝑥)
2 (𝜈𝑇 ⋅ 𝑀(𝑥) ⋅ 𝜈)3/2

𝑑ℒ(ℓ𝜈,𝜌). (3.75)

With the anisotropic coarea formula in Theorem 3.4 we have a way to calculate
the anisotropic total variation by integrating the anisotropic perimeter of each level
set of the image. We will now see how the anisotropic Cauchy–Crofton formula
can help us calculate the perimeters of the level sets. In the Euclidean case, which
here would amount to setting the anisotropy tensor 𝐴 equal to the identity matrix
𝐼 , the perimeter coincides nicely with the length of the boundary curve, assuming
some regularity for the boundary. In the general case we need to be more careful.
As can be seen in (3.41), the anisotropic perimeter is calculated by integrating
the norm of the normal vector around the boundary, while the anisotropic curve

30 CHAPTER 3. CONTINUOUS FORMULATION

length in (3.44) is the integral of the norm of the tangent vector of the curve. Thus
a 90° rotation separates the two.

If 𝑃 is a 90° rotation matrix we have

Per𝐴(𝑈; Ω) = ∫
𝜕𝑈

√⟨𝜈𝜕𝑈 , 𝐴(𝑥)𝜈𝜕𝑈⟩ 𝑑𝑡

= ∫
𝜕𝑈

√⟨𝑃𝜈𝜕𝑈 , 𝑃𝐴(𝑥)𝑃 𝑇 𝑃𝜈𝜕𝑈⟩ 𝑑𝑡.
(3.76)

We simplify the equation by defining the metric tensor 𝑀(𝑥) = 𝑃𝐴(𝑥)𝑃 𝑇 and
letting 𝛾 = 𝜕𝑈 ∩ Ω be an arclength parametrization of the boundary of 𝑈 that
does not overlap with the boundary of Ω

Per𝐴(𝑈; Ω) = ∫
𝛾

√⟨ ̇𝛾, 𝑀(𝑥) ̇𝛾⟩ 𝑑𝑡. (3.77)

Now we make sure that all the assumptions of the anisotropic Cauchy–Crofton
formula in Theorem 3.8 are fulfilled so that it can be applied to the curve length
integral we have constructed in (3.77).

The structure tensor is constructed as described in Section 3.1.1

𝑆𝜌(𝑥) = (𝐾𝜌 ∗ (∇𝑓𝜎 ⊗ ∇𝑓𝜎)) (𝑥). (3.78)

Because of the convolutions with the Gaussian function, this is a smooth map
from Ω̄ to ℝ2×2. As we can see in (3.6), the eigenvalues depend continuously on
the coefficients of the elements in the structure tensor 𝑆𝜌(𝑥). The extreme value
theorem states that a continuous real-valued function on a nonempty compact
space is bounded above. Thus the eigenvalues 𝜆1 ≥ 𝜆2 of 𝑆𝜌(𝑥) are bounded
above. Moreover, by the construction in (3.10), there exists uniform bound 𝑘 such
that the smallest eigenvalue 𝜎1 of the anisotropy tensor 𝐴(𝑥) is bounded away
from zero, as

𝜎1 = (1 + (𝜆1 − 𝜆2)2

𝜔2)
−1

≥ (1 + 𝜆2
1

𝜔2)
−1

≥ 𝑘 > 0. (3.79)

Hence our metric tensor 𝑀(𝑥) = 𝑃𝐴(𝑥)𝑃 𝑇 is continuous and positive definite with
bounded eigenvalues 𝑘 ≤ 𝜎1 ≤ 𝜎2 ≤ 𝐾 = 1 and thus the curve length calculation
in (3.77) fulfills all the assumptions of the anisotropic Cauchy–Crofton formula in
Theorem 3.8. Hence we can apply the formula to calculate the perimeter in (3.77)
as

Per𝐴(𝑈; Ω) = ∫
ℒ

∑
𝑥∈ℓ𝜈,𝜌∩𝛾

det 𝑀(𝑥)
2 (𝜈𝑇 ⋅ 𝑀(𝑥) ⋅ 𝜈)3/2

𝑑ℒ(ℓ𝜈,𝜌)𝑑𝑠, (3.80)

3.4. ANISOTROPIC CAUCHY–CROFTON FORMULA 31

where 𝛾 = 𝜕𝑈 ∩ Ω. Note that 𝑃 does not affect the determinant, i.e. det 𝐴 =
det 𝑃𝐴𝑃 𝑇 = det 𝑀 , and from our decomposition in (3.10) we see that the trans-
formation 𝑃𝐴𝑃 𝑇 → 𝑀 actually amounts to switching the two eigenvalues 𝜎1 and
𝜎2 in Σ.

This concludes the treatment of the continuous problem. We have seen how the
anisotropic coarea formula in Theorem 3.4 allows us to calculate the anisotropic
total variation as an integral of the perimeter of all the level sets. Through the
anisotropic Cauchy–Crofton formula in Theorem 3.8 these perimeters are calcu-
lated by an integral over the set of all lines. We are then left with the functional

𝐹(𝑢) = ∫
Ω

(𝑢 − 𝑓)2 + 𝛽 TV𝐴(𝑢), (3.81)

where

TV𝐴(𝑢) = ∫
∞

−∞
∫

ℒ
∑

𝑥∈ℓ𝜈,𝜌∩𝛾𝑠

det 𝑀(𝑥)
2 (𝜈𝑇 ⋅ 𝑀(𝑥) ⋅ 𝜈)3/2

𝑑ℒ(ℓ𝜈,𝜌)𝑑𝑠, (3.82)

and 𝛾𝑠 = 𝜕{𝑢 > 𝑠} ∩ Ω. Within the restrictions that these theorems put on the
tensor 𝑀(𝑥), we have chosen a construction where one eigenvalue is always 1,
while the other varies from 1 in smooth areas towards 0 around edges, with the
corresponding eigenvector perpendicular to the edge.

Chapter 4
Discrete formulation

The whole transformation from the initial functional in (3.4), through the an-
isotropic coarea formula and the Cauchy–Crofton formula was motivated by the
discrete formulation which will be described here. After discretizing the functional,
we will see how a graph cut approach can be used to find a global minimizer in
polynomial time.

4.1 Discretization
Assume that our discrete images are given on a uniform grid 𝒢, where each grid
point is called a pixel. The image is a function giving each pixel a value in the set
of levels 𝒫 = {0, … , 𝐿 − 1}, such that 𝑢 ∶ 𝒢 → 𝒫. This is a reasonable assumption
for digital grayscale images. Thus, when discretizing the functional in (3.81), we
have to consider that our images now have both discrete domain and co-domain.

The integrals in (3.81) will be approximated by discrete sums. First the fidelity
term is discretized without too much trouble, while with the regularization term,
there is more choice as to how to discretize the set of lines ℒ. In the end we will
verify that our discretization is consistent with the continuous functional.

4.1.1 Fidelity term
Since it is not affected by our introduction of the anisotropy tensor, the fidelity
term can be discretized as in my project work [1]. For some pixel position 𝑥 ∈ 𝒢
and some level value 𝑘 ∈ 𝒫, we define the following function

𝑁𝑥(𝑘) = |𝑘 − 𝑓𝑥|2 (4.1)

32

4.1. DISCRETIZATION 33

which is the value of the fidelity term if we were to give 𝑢𝑥 a value of 𝑘. This
allows us write

∫
Ω

|𝑢 − 𝑓|2 𝑑𝑥 ≈ ∑
𝑥∈𝒢

|𝑢𝑥 − 𝑓𝑥|2 Δ𝑥 = ∑
𝑥∈𝒢

𝑁𝑥(𝑢𝑥)Δ𝑥. (4.2)

The reason we introduce the function 𝑁𝑥(𝑘) is that we want to apply the following
decomposition formula, which holds for any function 𝐹(𝑘) taking values 𝑘 ∈ 𝒫:

𝐹(𝑘) =
𝑘−1
∑
𝜆=0

(𝐹(𝜆 + 1) − 𝐹(𝜆)) + 𝐹(0)

=
𝐿−2
∑
𝜆=0

(𝐹(𝜆 + 1) − 𝐹(𝜆))𝐼(𝜆 < 𝑘) + 𝐹(0),
(4.3)

where 𝐼(𝑥) is the indicator function that takes the value 1 if 𝑥 is true, and 0 if 𝑥
is false. Since 𝐼(𝜆 < 𝑢𝑥) = 𝑢𝜆

𝑥 we rewrite (4.2) and obtain

∑
𝑥∈𝒢

|𝑢𝑥 − 𝑓𝑥|2 = ∑
𝑥∈𝒢

𝑁𝑥(𝑢𝑥) =
𝐿−2
∑
𝜆=0

∑
𝑥∈𝒢

(𝑁𝑥(𝜆 + 1) − 𝑁𝑥(𝜆))𝑢𝜆
𝑥 + 𝑁𝑥(0). (4.4)

As our domain is discretized uniformly, we drop the constant Δ𝑥, and absorb
it into our parameter 𝛽 of (3.81). Note that since our image takes values in
𝒫 = {0, … , 𝐿 − 1}, the thresholded image 𝑢𝐿−1 is equal to zero everywhere.

4.1.2 Regularization term

Discretizing the regularization term is more challenging. We introduce the discrete
levels to get

∫
∞

−∞
Per𝐴({𝑢 > 𝜆}; Ω)𝑑𝜆 ≈

𝐿−2
∑
𝜆=0

Per𝐴({𝑢 > 𝜆}; Ω)Δ𝜆. (4.5)

As with the Δ𝑥 difference, we can absorb the Δ𝜆 difference into the 𝛽 parameter of
(3.81). The perimeter is then calculated using a discretized version of the Cauchy–
Crofton formula introduced in Theorem 3.8. Again, we stop the sum at 𝐿−2 since
the level set {𝑢 > 𝐿 − 1} is empty and has zero perimeter.

34 CHAPTER 4. DISCRETE FORMULATION

...

Δ𝜙

(a) The discrete set of lines ℒ𝐷 visual-
ized as a neighborhood.

......................................

Δ𝜌

(b) One family of lines having the same
𝜙 parameter.

Figure 4.1: The set of lines ℒ is discretized to ℒ𝐷 where each line belongs
to a family given by 𝜙, the angle parameter.

Discrete anisotropic Cauchy–Crofton formula

By approximating the integral Theorem 3.8 by a discrete sum we obtain the ap-
proximation

|𝐶|𝑀 = ∫
ℒ

∑
𝑥∈ℓ𝜈,𝜌∩𝐶

det 𝑀(𝑥)
2 (𝜈𝑇 ⋅ 𝑀(𝑥) ⋅ 𝜈)3/2

𝑑ℒ(ℓ𝜈,𝜌)

≈ ∑
ℓ𝜈,𝜌∈ℒ𝐷

∑
𝑥∈ℓ𝜈,𝜌∩𝐶

det 𝑀(𝑥)
2 (𝜈𝑇 ⋅ 𝑀(𝑥) ⋅ 𝜈)3/2

Δℓ𝜈,𝜌

= ∑
𝜈

∑
𝜌

∑
𝑥∈ℓ𝜈,𝜌∩𝐶

det 𝑀(𝑥)
2 (𝜈𝑇 ⋅ 𝑀(𝑥) ⋅ 𝜈)3/2

Δ𝜌 Δ𝜈.

(4.6)

The set of lines ℒ has been discretized into the set ℒ𝐷. Note that 𝐶 is still a
differentiable curve, not yet discretized. Being a difference in the 𝜌 parameter of
our line discretization in Figure 3.5, the difference Δ𝜌 represents the distance from
one line to the next in a line family as shown in Figure 4.1b, and thus depends
on the angle 𝜙 considered. The difference Δ𝜙 is taken to be the average of the
distance to the two neighboring line families as shown in Figure 4.1a, and thus
also depends on 𝜙.

The choice of our discrete set of lines ℒ𝐷 is important, as it will decide the
accuracy of our approximation. We need some sensible restrictions on the set

4.1. DISCRETIZATION 35

...........

𝑏

.

𝑎

Figure 4.2: Here our intersection approximation would not be correct, as
only the intersection with edge 𝑏 is counted in (4.15), even though the curve
intersects edge 𝑎 twice.

ℒ𝐷 to simplify the further discussion. All lines intersect at least two grid points,
and from the periodicity of our grid they thus intersect an infinite number of grid
points. This puts some restrictions on the angles we can choose. For each angle
included, we include all possible lines of that family, meaning there are no grid
points without a line of that family intersecting it.

The set of lines can then be represented by the neighborhood of a pixel as shown
in Figure 4.1a. We write 𝒩(𝑥) for the neighborhood of grid point 𝑥. Extending
the edges shown in Figure 4.1a gives all lines going through the point considered.
Figure 4.1b shows all lines of a given family, i.e. lines having the same angle
parameter 𝜙.

Thus not only have we discretized the set of lines, but each line is made up of
edges going from one grid point to the next. We will denote such an edge by 𝑒 or
𝑒𝑎𝑏 when its endpoints are 𝑎, 𝑏 ∈ 𝒢. Thus we rewrite the discretization of (4.6),
and sum over all the edges in the discretization ℒ𝐷 to obtain

|𝐶|𝑀 ≈ ∑
𝑒

∑
𝑥∈𝑒∩𝐶

det 𝑀(𝑥) ‖𝑒‖3

2 (𝑒𝑇 ⋅ 𝑀(𝑥) ⋅ 𝑒)3/2
Δ𝜙 Δ𝜌. (4.7)

This is beginning to look like something we can calculate. One difficulty is finding
the intersections 𝑒 ∩ 𝐶. The exact calculations of these points will not fit into our
graph cut framework later, and thus for an edge 𝑒 we will only consider the question
of “did 𝑒 cross 𝐶 or not?” This amounts to checking whether the terminals of 𝑒
lie on different sides of the curve 𝐶. This approximation is exact for zero or one
intersection points, but will, as we see in Figure 4.2, be wrong when we have more.

The second difficulty is that in the discrete setting, we will only have an ap-
proximation of the metric tensor 𝑀(𝑥) for each point 𝑥 ∈ 𝒢, and it is thus not
available for arbitrary intersection points in Ω. For an intersection of edge 𝑒 we
will utilize the average of the tensor in the two endpoints of the edge. Thus for an

36 CHAPTER 4. DISCRETE FORMULATION

.........................

Figure 4.3: A visual argument showing that 𝛿2 = Δ𝜌 ‖𝑒‖. If extended
to the whole plane, there will be the same amount of blue squares as red
rectangles as each grid point is the upper left corner of both a blue and a
red rectangle. Thus their areas must be equal.

intersection point 𝑥 somewhere on the edge 𝑒𝑎𝑏, we approximate the metric tensor
by

𝑀(𝑥) ≈ 𝑀(𝑒𝑎𝑏) = 𝑀(𝑎) + 𝑀(𝑏)
2 , (4.8)

the component-wise average of the tensors in the two end points of the edge. Recall
that we have already done some spatial smoothing of the structure tensor in (3.5)
corresponding to the integration scale 𝜌, and thus we expect the tensors 𝑀(𝑎) and
𝑀(𝑏) to be similar for edges 𝑒 of reasonably short length.

We also remark that using the Rayleigh principle, it is easy to conclude that
the eigenvalues of the tensor approximation 𝑀(𝑒𝑎𝑏) are bounded below and above
by the smallest and largest eigenvalues of 𝑀(𝑎) and 𝑀(𝑏).

We have now almost arrived at our final curve length approximation, but we
need a way to calculate the inter-line distance Δ𝜌 which will be provided by the
following lemma.

Lemma 4.1. For each family of lines given by an angle parameter 𝜙 in the uniform
grid of size 𝛿 we have the relation

𝛿2 = ‖𝑒‖ Δ𝜌. (4.9)

Proof. Consider a line ℓ intersecting the point in the grid given by the indices
(𝑝, 𝑞) ∈ ℤ2. The distance Δ𝜌 from this line ℓ to the neighboring lines can then be
calculated as a minimum over the distance to all other grid points.

The lines are split into edges 𝑒 = (𝛿𝑠, 𝛿𝑡)𝑇 where 𝑠, 𝑡 ∈ ℤ are coprime such
that 𝑒 does not intersect any other grid points than its two endpoints.

4.1. DISCRETIZATION 37

We then calculate the minimal distance to a grid point not on the line ℓ as

Δ𝜌 = min
(𝑝′,𝑞′)∈𝒢\ℓ

{⟨𝛿[𝑝 − 𝑝′, 𝑞 − 𝑞′], 𝑒⟂

‖𝑒⟂‖⟩}

= min
(𝑝′,𝑞′)∈𝒢\ℓ

{𝛿2 ⋅ 𝑡(𝑝 − 𝑝′) − 𝑠(𝑞 − 𝑞′)
‖𝑒‖ } .

(4.10)

Since 𝑠 and 𝑡 are coprime, there exists 𝑎, 𝑏 ∈ ℤ such that 𝑎𝑡 − 𝑏𝑠 = 1, and since
the Δ𝜌 cannot be zero, we obtain

Δ𝜌 = 𝛿2

‖𝑒‖. (4.11)

A visual argument for the same result can be seen in Figure 4.3.

Inserting Δ𝜌 = 𝛿2/ ‖𝑒‖ and the tensor approximation of (4.8) into the curve
length approximation of (4.7) we obtain

|𝐶|𝑀 ≈ ∑
𝑒∩𝐶

det 𝑀(𝑒) ‖𝑒‖2 𝛿2 Δ𝜙
2 (𝑒𝑇 ⋅ 𝑀(𝑒) ⋅ 𝑒)3/2

, (4.12)

where the sum is over all edges crossing the curve.
The curve length we initially wanted to calculate was the level set perimeter

Per𝐴({𝑢 > 𝜆}; Ω) in (4.5). To find edges that crosses this boundary curve, we
identify the edges that have one terminal inside the level set, and the other outside.
Thus we rewrite the sum over 𝑒 ∩ 𝐶 such that

Per𝐴({𝑢 > 𝜆}; Ω) ≈ ∑
𝑒𝑎𝑏

∣𝑢𝜆
𝑎 − 𝑢𝜆

𝑏 ∣ det 𝑀(𝑒𝑎𝑏) ‖𝑒𝑎𝑏‖2 𝛿2 Δ𝜙
2 (𝑒𝑇

𝑎𝑏 ⋅ 𝑀(𝑒𝑎𝑏) ⋅ 𝑒𝑎𝑏)
3/2

. (4.13)

The absolute value ∣𝑢𝜆
𝑎 − 𝑢𝜆

𝑏 ∣ is 1 if one of 𝑎 and 𝑏 lie inside the level set and the
other lies outside, and 0 otherwise. In other words the absolute value is one if 𝑒𝑎𝑏
crosses the perimeter of {𝑢 > 𝜆} an odd number of times, and zero otherwise.

Thus we have arrived at our final discretization, which takes the form

𝐹(𝑢) = ∑
𝜆

∑
𝑥

𝐹 𝜆
𝑥 (𝑢𝜆

𝑥) + 𝛽 ∑
𝜆

∑
(𝑥,𝑦)

𝐹 𝜆
𝑥,𝑦(𝑢𝜆

𝑥, 𝑢𝜆
𝑦) =∶ 𝐹 𝜆(𝑢𝜆), (4.14)

𝐹 𝜆
𝑥 (𝑢𝜆

𝑥) = (𝑁𝑥(𝜆 + 1) − 𝑁𝑥(𝜆)) ⋅ 𝑢𝜆
𝑥,

𝐹 𝜆
𝑥,𝑦(𝑢𝜆

𝑥, 𝑢𝜆
𝑦) = ∣𝑢𝜆

𝑥 − 𝑢𝜆
𝑦 ∣ det 𝑀(𝑒𝑥𝑦) ∥𝑒𝑥𝑦∥2 𝛿2 Δ𝜙

2 (𝑒𝑇𝑥𝑦 ⋅ 𝑀(𝑒𝑥𝑦) ⋅ 𝑒𝑥𝑦)3/2
. (4.15)

Recall that 𝑁𝑥(𝜆) = |𝜆 − 𝑓𝑥|2.

38 CHAPTER 4. DISCRETE FORMULATION

If we minimize 𝐹𝜆 to obtain 𝑢𝜆 for each level separately, it is obvious that
we will also minimize the sum over all 𝐹𝜆. However, it is not guaranteed that
the obtained thresholded images 𝑢𝜆 can be combined to make an output image 𝑢.
They were defined as 𝑢𝜆 = 𝜒𝑢>𝜆, so we need them to be monotonically decreasing
in increasing level values, i.e.

𝑢𝜆
𝑥 ≥ 𝑢𝜇

𝑥, ∀𝜆 ≤ 𝜇, ∀𝑥 ∈ 𝒢. (4.16)

Later we will present two graph cut algorithms that find the thresholded images
minimizing each level, while guaranteeing that they meet this requirement.

Consistency

Consistency relates to whether a solution to the continuous problem fits in the dis-
cretized equation, in other words, whether the discretized equation approximates
the continuous one.

It is obvious that the discretization of the fidelity term in (4.2) is consistent.
The sum is a midpoint rule approximation of the integral. As the grid is refined
and 𝛿 → 0 the sum will converge to the integral.

For the regularization term we will argue that for a differentiable curve 𝐶, the
discretization of our domain Ω and the set of lines ℒ gives a discrete Cauchy–
Crofton formula that is consistent with the continuous one. We will show that for
an increasingly refined discrete domain 𝒢, there exists a choice for ℒ𝐷 that leads to
a consistent Cauchy–Crofton formula. For convenience we will use a neighborhood
representation of ℒ𝐷 similar to the one in Figure 4.1a.

If we consider the edges 𝑒 of each family separately, the curve length approxi-
mation in (4.12) can be written

|𝐶|𝑀 = ∫
𝜈

∫
𝜌

∑
𝑥∈ℓ𝜈,𝜌∩𝐶

det 𝑀(𝑥)
2 (𝜈𝑇 ⋅ 𝑀(𝑥) ⋅ 𝜈)3/2

𝑑𝜌 𝑑𝜈

≈ ∑
𝜈

∑
𝜌

∑
𝑒𝜈,𝜌∩𝐶

det 𝑀(𝑒𝜈,𝜌) ∥𝑒𝜈,𝜌∥3

2 (𝑒𝑇𝜈,𝜌 ⋅ 𝑀(𝑒𝜈,𝜌) ⋅ 𝑒𝜈,𝜌)3/2
Δ𝜌 Δ𝜈.

(4.17)

As described in the construction of this formula, there are four main approxima-
tions used. Firstly there is the fact that we do not consider the actual intersection
points, but only whether an edge crosses the curve or not. Secondly we have the
tensor which is averaged as in (4.8). And then we have the discretizations of our
two line parameters 𝜈 and 𝜌.

It is intuitive that if sup ‖𝑒‖ → 0, the number of times the differentiable curve
𝐶 can cross a given edge decreases. We will not prove convergence, but rather
assume that the special cases where it might not work, are negligible.

4.1. DISCRETIZATION 39

..............

∆𝜌

Figure 4.4: The discretization in the 𝜌 dimension can be regarded as a
midpoint rule approximation of the integral, since the difference Δ𝜌 the
same for all lines in one line family.

...

𝜙𝑘−1

.

𝜙𝑘

.

𝜙𝑘+1

.

Δ𝜙𝑘

Figure 4.5: We showed that the maximal angle difference Δ𝜙𝑘 goes to
zero. The discretization in the 𝜙 dimension can be viewed as a rectangle
approximation rule of the integral, as the summand is evaluated at 𝜙𝑘,
somewhere inside the interval Δ𝜙𝑘.

Further, if sup ‖𝑒‖ → 0 it is obvious that the tensor average in (4.8) converges
to the tensor in the intersection point.

Consider now the discretization in 𝜌. For each 𝜙 parameter, our discretization
in the 𝜌 dimension can be regarded as a midpoint rule as shown in Figure 4.4.
Thus if sup Δ𝜌 → 0, this part of the discretization is consistent.

The discretization in the 𝜙 dimension can also be regarded as a version of the
rectangle method, although not the midpoint rule. As shown in Figure 4.5, the
circle is split into intervals

[𝜙𝑘−1 + 𝜙𝑘
2 , 𝜙𝑘 + 𝜙𝑘+1

2] (4.18)

of length Δ𝜙𝑘 = (𝜙𝑘+1 + 𝜙𝑘−1)/2. The summand is evaluated at 𝜙𝑘, somewhere
inside the interval. Thus if sup Δ𝜙𝑘 → 0, this discretization is also consistent.

To show that all these properties can be fulfilled, we look at a particular neigh-
borhood stencil construction. Consider a square centered around a grid point with

40 CHAPTER 4. DISCRETE FORMULATION

..

𝑎

.

𝑏

.

√
𝛿

Figure 4.6: To show that we have a consistent discretization of the
Cauchy–Crofton integral formula, we construct a discrete set of lines ℒ𝐷
such that the length of the edges ‖𝑒‖, the angle differences Δ𝜙 (here 𝑎 and
𝑏) and the distance between lines Δ𝜌 goes to zero as 𝛿 → 0.

side lengths
√

𝛿 as shown in Figure 4.6. As 𝛿 goes to zero, the size of this square
will go to zero. Inside this square we can fit a square of 𝑛2 = ⌊1/

√
𝛿⌋2 grid points.

This means that the number of grid points along the outer edge of this square 𝑛
goes to infinity.

We include all grid points inside the square in our neighborhood, except for
multiple points that lie on the same line from the origin. If two or more grid points
lie on the same line, we include only the one closest to the origin. This implies
that for each grid point along the outer edge of this square, we include in our
neighborhood a grid point having the same angle 𝜙 to the 𝑥-axis.

This construction can be seen in Figure 4.6 for 𝑛 = 5. The maximal angle
between two lines 𝜙𝑘 − 𝜙𝑘−1 will always be when one of 𝜙𝑘 and 𝜙𝑘−1 is horizontal
or vertical, shown in Figure 4.6 as the angle 𝑎. Thus the largest Δ𝜙𝑘 will be when
𝜙𝑘 = 𝑚𝜋/2 for 𝑚 ∈ ℤ, so around vertical and horizontal edges. The supremum can
then be calculated to be

sup Δ𝜙𝑘 = 2 ⋅ sup 𝜙𝑘+1 − 𝜙𝑘
2 = arctan 1/𝑛

𝑛/2 = arctan 2
𝑛2 → 0. (4.19)

Further we see that the edge length will be bounded by half of the diagonal of
the square such that

‖𝑒‖ ≤ √𝛿/2 → 0. (4.20)
And finally we know from Lemma 4.1 that for each line family 𝛿2 = Δ𝜌 ‖𝑒‖ and
‖𝑒‖ ≥ 𝛿. Thus for the inter-line distance Δ𝜌𝑘 we have

sup Δ𝜌𝑘 = sup 𝛿2

‖𝑒‖ ≤ 𝛿2

𝛿 = 𝛿 → 0. (4.21)

4.2. GRAPH CUT APPROACH 41

Hence the approximation has been shown to be equivalent to well-known, and
consistent integral approximations, where the summand converges to the inte-
grand, and the differences Δ𝜙 and Δ𝜌 go to zero. Thus the perimeter approxima-
tion in (4.5) is consistent with the continuous formulation in Theorem 3.8.

Note that as we will work with digital images with fixed resolutions, we do not
really have the chance to refine our discretization. We do however have to take
these things into account when creating our neighborhood stencil, to make sure
that we get a reasonable approximation of the perimeter lengths.

4.2 Graph cut approach
The discretization we arrived at in (4.15) can be minimized using graph cuts. For
each level 𝜆, a minimum graph cut is found to produce the corresponding level set
{𝑢 > 𝜆}. These are then combined to form the final restored image 𝑢.

In this section we will look at how these graphs are constructed such that their
minimum cuts correspond to the minimizers of the functional 𝐹 𝜆. The description
is taken with some small adjustments from my project work [1], and is included
here for completeness. An implementation of the described approach can be found
in Appendix A.

4.2.1 Graphs
Using the notation of [18] we will denote a directed graph as 𝐺 = (𝑉 , 𝐸) where
𝑉 is a finite set of vertices, and 𝐸 is a binary relation on 𝑉 . If (𝑢, 𝑣) ∈ 𝐸 we say
that there is an edge from 𝑢 to 𝑣 in the graph 𝐺.

We introduce the non-negative capacity function 𝑐 ∶ 𝑉 × 𝑉 → [0, ∞). Only
edges (𝑢, 𝑣) ∈ 𝐸 can have a positive capacity 𝑐(𝑢, 𝑣) = 𝑞 > 0 and it means that it
is possible to send a flow of maximum 𝑞 units from 𝑢 to 𝑣. For convenience we will
let 𝑐(𝑢, 𝑣) = 0 for any pair (𝑢, 𝑣) ∉ 𝐸, and we do not allow self-loops in our graph.
When a directed graph 𝐺 is equipped with capacity function 𝑐, one might call it
a capacitated graph or a flow network, but as all our graphs will be capacitated
from this point, we will just call them graphs and we write 𝐺 = (𝑉 , 𝐸, 𝑐).

There are two special vertices in the graph, the source 𝑠 and the sink 𝑡. Con-
trary to other vertices, which can neither produce nor receive excess flow, the
source can produce and the sink can receive an unlimited amount of flow. The
most basic problem in graph flow theory is the question of how much flow it is
possible to send through the graph from the source to the sink.

What we seek in our final graph is a minimum 𝑠-𝑡-cut, a “minimal” line through
the graph that cuts a set of edges and divides the vertex set in two, separating the
source from the sink.

42 CHAPTER 4. DISCRETE FORMULATION

Definition 4.2 (𝑠-𝑡-cut). Given a graph 𝐺 = (𝑉 , 𝐸, 𝑐), an 𝑠-𝑡-cut (𝑆, 𝑇) of 𝐺 is
a partition of 𝑉 into 𝑆 and 𝑇 = 𝑉 − 𝑆 such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 . The capacity
of the cut is

𝑐(𝑆, 𝑇) = ∑
𝑢∈𝑆

∑
𝑣∈𝑇

𝑐(𝑢, 𝑣), (4.22)

and a minimum 𝑠-𝑡-cut is a cut whose capacity is minimum over all 𝑠-𝑡-cuts.
Note that there might exist several minimum 𝑠-𝑡-cuts in a graph, resulting in

different partitions of 𝑉 . This is why we need to verify later that the cuts we
obtain result in stackable thresholded images.

4.2.2 Graph representable functionals
The next step is to find a way to construct a graph such that we can minimize
the functional in (4.15) by finding a minimum 𝑠-𝑡-cut. We will do this by creating
small and simple graphs representing the separate summands of the functional. For
these small graphs it will be easy to verify that the minimal cut also minimizes
the corresponding part of the functional, and they can then be merged giving a
graph representing the complete functional in (4.15).

First we need to establish the definition of a graph representable function,
presented by Kolmogorov and Zabih in [19].
Definition 4.3 (Graph representable functions). A function ℰ(𝑥1, … , 𝑥𝑛) of 𝑛
binary variables is graph-representable if there exists a graph 𝐺 = (𝑉 , 𝐸, 𝑐) with
terminals 𝑠 and 𝑡, and a subset of vertices 𝑉0 = {𝑣1, … , 𝑣𝑛} ⊆ 𝑉 −{𝑠, 𝑡} such that,
for any configuration (𝑥1, … , 𝑥𝑛) ∈ {0, 1}𝑛, the value of the energy ℰ(𝑥1, … , 𝑥𝑛) is
equal to a constant plus the cost of the minimum 𝑠-𝑡-cut among all cuts 𝐶 = (𝑆, 𝑇)
where 𝑥𝑖 = 0 ⇔ 𝑣𝑖 ∈ 𝑆 and 𝑥𝑖 = 1 ⇔ 𝑣𝑖 ∈ 𝑇 , ∀ 1 ≤ 𝑖 ≤ 𝑛.

From this definition we see that if we have a graph-representable function ℰ it
is possible to find an exact global minimum of ℰ by finding a minimal 𝑠-𝑡-cut in a
graph representing ℰ.

Furthermore Kolmogorov and Zabih present an important result concerning
what kinds of functions are graph-representable.
Theorem 4.4 (Identification of graph representable functions). Given an energy
function ℰ of 𝑛 binary variables of the form

ℰ(𝑥1, … , 𝑥𝑛) = ∑
𝑖

ℰ𝑖(𝑥𝑖) + ∑
𝑖<𝑗

ℰ𝑖,𝑗(𝑥𝑖, 𝑥𝑗), (4.23)

then ℰ is graph representable if and only if each term ℰ𝑖,𝑗 satisfies the inequality
ℰ𝑖,𝑗(0, 0) + ℰ𝑖,𝑗(1, 1) ≤ ℰ𝑖,𝑗(0, 1) + ℰ𝑖,𝑗(1, 0). (4.24)

4.2. GRAPH CUT APPROACH 43

This theorem will allow us to verify that our functional actually is graph rep-
resentable.

Finally, the following theorem, proved by Kolmogorov and Zabih in [19], will
be crucial in our graph construction.

Theorem 4.5 (Additivity). The sum of a finite number of graph-representable
functions

ℰ(𝑥1, … , 𝑥𝑛) = ∑
𝑘

ℰ𝑘(𝑥1, … , 𝑥𝑛), (4.25)

each represented by a graph 𝐺𝑘 = (𝑉 𝑘, 𝐸𝑘, 𝑐𝑘), is graph-representable by 𝐺 =
(𝑉 , 𝐸, 𝑐) where 𝑉 = ∪𝑘𝑉 𝑘, 𝐸 = ∪𝑘𝐸𝑘 and 𝑐(𝑢, 𝑣) = ∑𝑘 𝑐𝑘(𝑢, 𝑣).

It allows us to construct small graphs representing the different summands of
our functional (4.15), before adding them together to create a final graph repre-
senting complete functional.

Note that when we apply this theorem later, we will assume that all the sum-
mands of (4.15) have the whole picture as their domain. It is unproblematic to
extend 𝐹 𝑥

𝜆 (𝑢𝜆
𝑥) and 𝐹 𝑥,𝑦(𝑢𝜆

𝑥, 𝑢𝜆
𝑦) such that they take all the pixels their argument

and then ignore all pixels except the ones they actually depend on.

..s.

𝑢𝜆
𝑥

.

t

.

𝐹 𝑥
𝜆 (1)

(a) The graph when 𝐹 𝑥
𝜆 (1) > 0, with

constant equal to 0.

..s.

𝑢𝜆
𝑥

.

t

.

−𝐹 𝑥
𝜆 (1)

(b) Graph when 𝐹 𝑥
𝜆 (1) < 0, with con-

stant equal to −𝐹 𝑥
𝜆 (1).

Figure 4.7: The graph construction for the fidelity term 𝐹 𝑥
𝜆 (𝑢𝜆

𝑥). See
Table 5.1 for an overview of the different possible cuts, and on why this
construction works.

4.2.3 Graph construction
We will construct a graph in such a way that if a vertex 𝑢𝜆

𝑥 ends up on the source
side of the cut we set 𝑢𝜆

𝑥 = 1, and if it ends up on the sink side we set 𝑢𝜆
𝑥 = 0, as

44 CHAPTER 4. DISCRETE FORMULATION

Table 4.1: Each row represents one of the two possible values of 𝑢𝜆
𝑥 ∈

{0, 1}. The functional 𝐹 𝑥
𝜆 (𝑢𝜆

𝑥) and minimum cut obtaining this configura-
tion is shown. The last two columns show the capacities of the cut for each
of the two graph constructions in Figure 4.7. We verify that for each of
the two graph constructions, the cut capacities are equal to the functional
value, plus a constant.

𝑢𝜆
𝑥 𝐹 𝑥

𝜆 (𝑢𝜆
𝑥) Min. cut (𝑆, 𝑇) Graph (a) cut cap. Graph (b) cut cap.

0 0 ({𝑠}, {𝑢𝜆
𝑥, 𝑡}) 0 −𝐹 𝑥

𝜆 (1)
1 𝐹 𝑥

𝜆 (1) ({𝑠, 𝑢𝜆
𝑥}, {𝑡}) 𝐹 𝑥

𝜆 (1) 0

in Definition 4.3. This is an arbitrary choice, but still something we have to keep
in mind through the rest of the section.

We will now consider the two kinds of summands in the discrete functional
(4.15). The fidelity term coming from our aim to keep the output image close to
the original image, and the regularization term coming from our aim to minimize
the total variation.

Fidelity term

The fidelity term of our discrete functional (4.15) simplifies to

𝐹 𝑥
𝜆 (0) = 0 (4.26)

𝐹 𝑥
𝜆 (1) = 𝑁𝑥(𝜆 + 1) − 𝑁𝑥(𝜆) (4.27)

where 𝐹 𝑥
𝜆 (1) might be positive or negative depending on 𝜆 and the pixel value 𝑓𝑥.

Figure 4.7 shows how graphs can be constructed to represent this part of func-
tional. The construction differs depending on whether 𝐹 𝑥

𝜆 (1) is positive or neg-
ative. Table 5.1 shows how the cuts correspond to the values of 𝑢𝜆

𝑥 and we can
easily verify that the constructed graph actually represents the fidelity term.

Regularization term

For our regularization term in (4.15) on the form

𝐹 𝑥,𝑦(𝑢𝜆
𝑥, 𝑢𝜆

𝑦) = 𝑤𝑥𝑦 ∣𝑢𝜆
𝑥 − 𝑢𝜆

𝑦 ∣ (4.28)

we have
𝐹 𝑥,𝑦(0, 0) = 0,
𝐹 𝑥,𝑦(0, 1) = 𝑤𝑥𝑦,
𝐹 𝑥,𝑦(1, 0) = 𝑤𝑥𝑦,
𝐹 𝑥,𝑦(1, 1) = 0,

(4.29)

4.2. GRAPH CUT APPROACH 45

..s.

𝑢𝜆
𝑥

.

𝑢𝜆
𝑦

.

t

.

𝑤 𝑥𝑦

.

2𝑤𝑥𝑦

.

𝑤 𝑥𝑦

(a) Representing 𝐹 𝑥,𝑦(𝑢𝜆
𝑥, 𝑢𝜆

𝑦)
with a constant term of 𝑤𝑥𝑦.

..s.

𝑢𝜆
𝑥

.

𝑢𝜆
𝑦

.

t

.

𝑤𝑥𝑦

.

𝑤𝑥𝑦

(b) Representing 𝐹 𝑥,𝑦(𝑢𝜆
𝑥, 𝑢𝜆

𝑦)
with a constant term of 0.

Figure 4.8: Two alternative ways of constructing a graph representing
the energy term 𝐹 𝑥,𝑦(𝑢𝜆

𝑥, 𝑢𝜆
𝑦). See Table 4.2 for an overview of the different

possible configurations of (𝑢𝜆
𝑥, 𝑢𝜆

𝑦) and how they correspond to cuts through
the graph.

and by Theorem 4.4 our functional is graph representable. In [19], Kolmogorov and
Zabih presents a way to construct a graph for any graph representable function on
the form shown in Theorem 4.4. Since the energies in (4.29) are especially simple,
the construction and presentation is simplified.

Figure 4.8 shows two different ways of how a graph can be constructed to
represent the regularization term. See Table 4.2 for an overview of how the values
of (𝑢𝜆

𝑥, 𝑢𝜆
𝑦) corresponds to cuts in the graph.

Figure 4.9 shows a visualization of how the final graph might look with all its
edges. The source will have a lot of outgoing edges, one for each pixel, while the
sink has one incoming edge from each pixel. The vertices corresponding to the
pixels are only connected to the source, the sink, and their neighboring pixels, so
their edge degree is much smaller than for 𝑠 and 𝑡.

46 CHAPTER 4. DISCRETE FORMULATION

Table 4.2: An overview of the possible configurations of the variables in
the term 𝐹 𝑥,𝑦(𝑢𝜆

𝑥, 𝑢𝜆
𝑦). For each configuration the corresponding functional

value and the cut yielding this configuration is shown. The last two columns
show the capacities of the cut in the two alternative graph constructions
shown in Figure 4.8. We verify that for each of the two graph constructions,
the cut capacities are equal to the functional value, plus a constant.

(𝑢𝜆
𝑥, 𝑢𝜆

𝑦) 𝐹 𝑥,𝑦(𝑢𝜆
𝑥, 𝑢𝜆

𝑦) Min. cut (𝑆, 𝑇) Alt. (a) cut cap. Alt. (b) cut cap.
(0, 0) 0 ({𝑠}, {𝑢𝜆

𝑥, 𝑢𝜆
𝑦 , 𝑡}) 𝑤𝑥𝑦 0

(0, 1) 𝑤𝑥𝑦 ({𝑠, 𝑢𝜆
𝑦}, {𝑢𝜆

𝑥, 𝑡}) 2𝑤𝑥𝑦 𝑤𝑥𝑦
(1, 0) 𝑤𝑥𝑦 ({𝑠, 𝑢𝜆

𝑥}, {𝑢𝜆
𝑦 , 𝑡}) 2𝑤𝑥𝑦 𝑤𝑥𝑦

(1, 1) 0 ({𝑠, 𝑢𝜆
𝑥, 𝑢𝜆

𝑦}, {𝑡}) 𝑤𝑥𝑦 0

..

s

.

t

................

Figure 4.9: A visualization of the final graph, with edges between neigh-
boring pixels, and edges connecting the source and sink to the rest of the
graph. The edge capacities are not visualized, and of course some of them
might be zero while others might be very high.

Chapter 5
Maximum flow

In the previous section we have seen how finding the minimum cut of carefully con-
structed graph can give us the thresholded image minimizing the functional for one
level value 𝜆. We will in this and the next section see how such a minimum cut can
be found by sending flow through the graph and trying to identify the “bottleneck”.
This chapter, except for the description of the Boykov–Kolmogorov algorithm is
taken with some adjustments from my project work [1] and is included here for
completeness. Implementations of the push-relabel and Boykov–Kolmogorov algo-
rithms can be found in Appendix A.

5.1 Flow graphs
We have already introduced capacities, and briefly mentioned the notion of flow
as something limited by the capacity. In other words, flow is something we can
send through our graph, but the capacity limits how much we can send along each
edge. It is useful to imagine a water supply graph with pipes of different sizes and
a water source and sink.

Formally, we introduce the flow as the function 𝑓 ∶ 𝑉 × 𝑉 → [0, ∞). This
function keeps count of how much flow we are sending through each edge of our
graph and must satisfy the following two constraints

Capacity constraint: For all 𝑢, 𝑣 ∈ 𝑉 , 0 ≤ 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣), i.e., for every pair
of vertices, the flow is less than or equal to the capacity.

Flow conservation: For all 𝑢 ∈ 𝑉 − {𝑠, 𝑡}

∑
𝑣∈𝑉

𝑓(𝑣, 𝑢) = ∑
𝑣∈𝑉

𝑓(𝑢, 𝑣), (5.1)

47

48 CHAPTER 5. MAXIMUM FLOW

i.e., for any vertex except the source and the sink, the flow into the vertex
must be equal to the flow out of the vertex.

Note that we have defined 𝑓 with all pairs of vertices as its domain, even though
it is only non-zero on edges (𝑢, 𝑣) ∈ 𝐸. This makes it easier to write sums as
in the flow conservation constraint. We say that an edge (𝑢, 𝑣) is saturated if
𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣).

We define |𝑓| as the net amount of flow from the source to the sink in the
graph. Because of the flow conservation constraint, this can be calculated as the
net amount of flow going out of the source

|𝑓| = ∑
𝑣∈𝑉

𝑓(𝑠, 𝑣) − ∑
𝑢∈𝑉

𝑓(𝑢, 𝑠). (5.2)

Furthermore we denote the net flow across an 𝑠-𝑡-cut 𝐶 = (𝑆, 𝑇) as
𝑓(𝑆, 𝑇) = ∑

𝑢∈𝑆
∑
𝑣∈𝑇

𝑓(𝑢, 𝑣) − ∑
𝑣∈𝑇

∑
𝑢∈𝑆

𝑓(𝑣, 𝑢). (5.3)

Note how this definition differs from the capacity of a cut 𝑐(𝑆, 𝑇) in Definition 4.2.
While the capacity of a cut represents how much flow it is maximally possible to
send from 𝑆 to 𝑇 , the net flow across a cut represents the net amount of flow going
across the cut, counting negatively the flow that goes back from 𝑇 to 𝑆.

For any 𝑠-𝑡-cut we have that
|𝑓| = 𝑓(𝑆, 𝑇). (5.4)

This is quite intuitive given the flow conservation constraint, and a full chain of
arguments can be found in [18].

Following from (5.3) and (5.4), we find that
|𝑓| = ∑

𝑢∈𝑆
∑
𝑣∈𝑇

𝑓(𝑢, 𝑣) − ∑
𝑣∈𝑇

∑
𝑢∈𝑆

𝑓(𝑣, 𝑢)

≤ ∑
𝑢∈𝑆

∑
𝑣∈𝑇

𝑓(𝑢, 𝑣)

≤ ∑
𝑢∈𝑆

∑
𝑣∈𝑇

𝑐(𝑢, 𝑣)

≤ 𝑐(𝑆, 𝑇)

(5.5)

for any 𝑠-𝑡-cut 𝐶 = (𝑆, 𝑇). A very central result in graph flow theory called the
max-flow min-cut theorem will be presented later. It states that the inequality of
(5.5) becomes an equality when 𝑓 is a maximum flow for some cut 𝐶 = (𝑆, 𝑇),
and that all such cuts are minimum cuts.

But how does this help us? If we know the maximum flow value, and we have
an 𝑠-𝑡-cut with capacity equal to the maximum flow, we actually have a minimum
cut. The question is then, how do we find a maximum flow, and how do we find a
minimum cut?

5.2. AUGMENTING PATH ALGORITHMS 49

5.2 Augmenting path algorithms
The family of augmenting flow algorithms represent a popular approach to the
maximum flow problem. The idea is simply to look for paths from the source
to the sink that can carry additional flow, so-called augmenting paths, and then
send the maximum possible amount of flow along such a path. When no such
path exists anymore, no more flow can be sent from the source to the sink, and a
maximum flow has been reached.

5.2.1 Residual graph
When further discussing approaches to solving the maximum flow problem we will
need the notion of a residual graph 𝐺𝑓 = (𝑉𝑓 , 𝐸𝑓 , 𝑐𝑓), which is derived from the
original graph 𝐺 and contains the edges along which it is possible to send additional
flow. This means that 𝐸𝑓 contains the edges (𝑢, 𝑣) from 𝐸 where 𝑓(𝑢, 𝑣) < 𝑐(𝑢, 𝑣).
But that is not all; an important realization is that it is also possible to push flow
back along an edge where the flow is already positive. In other words, sending flow
from 𝑣 to 𝑢 by canceling some or all of the flow that is already going from 𝑢 to 𝑣.

Thus the capacity function 𝑐𝑓 of our residual graph becomes

𝑐𝑓(𝑢, 𝑣) =
⎧{
⎨{⎩

𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣) if (𝑢, 𝑣) ∈ 𝐸,
𝑓(𝑣, 𝑢) if (𝑣, 𝑢) ∈ 𝐸,
0 otherwise.

(5.6)

The vertices 𝑉𝑓 of 𝐺𝑓 are the same as the original graph 𝐺, while the edges 𝐸𝑓
are taken to be all pairs of vertices (𝑢, 𝑣) with 𝑐𝑓(𝑢, 𝑣) > 0. Since we can in 𝐸𝑓 at
most have all the original edges, and their reversals, we have ∣𝐸𝑓 ∣ ≤ 2 |𝐸|.

Note that there is ambiguity in the definition of the residual graph in the
case where the original graph contains anti-parallel edges. One could avoid this
by defining 𝑐𝑓(𝑢, 𝑣) = 𝑓(𝑣, 𝑢) + 𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣) instead, or as they do in [18],
disallow anti-parallel edges altogether. In any case it is not something we will
have to think about in the implementation, since we will not actually construct
the residual graph.

With the residual graph defined, we are ready to formally present the max-flow
min-cut theorem.

Theorem 5.1 (Max-flow min-cut theorem). If 𝑓 is a flow in a graph 𝐺 = (𝑉 , 𝐸, 𝑐)
with source 𝑠 and sink 𝑡, then the following statements are equivalent:

1. 𝑓 is a maximum flow in 𝐺.

2. The residual graph 𝐺𝑓 contains no augmenting paths.

50 CHAPTER 5. MAXIMUM FLOW

3. |𝑓| = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

See [18] for a proof, and remark that because of the inequality in (5.5), the cut
in Statement 3 is a minimum cut. The theorem does not tell us how to find such
a cut, and there are multiple ways. One possibility is to take 𝑆 to be all vertices
reachable from the source in the residual graph and 𝑇 = 𝑉 − 𝑆.

Figure 5.1 shows a simple graph which already has five units flowing from 𝑠
to 𝑡. The marked path is a possible augmenting path, and note that it follows
an edge in 𝐸 in the reverse direction, made possible by the construction of the
residual graph just described.

5.2.2 Ford-Fulkerson
The Ford-Fulkerson algorithm is the most basic augmenting path algorithm, which
can be extended to more advanced algorithms. It is stated in pseudocode in
Algorithm 1, and the idea is to augment the flow along paths from 𝑠 to 𝑡 until it
is no longer possible.

There are different ways to find augmenting paths, and a common choice is
to do a breadth-first search from the source until the sink is found, as this will
yield the shortest possible augmenting path. This version of the algorithm is called
Edmonds-Karp and has a running time of 𝑂(|𝑉 | |𝐸|2). See for example [18] for a
description of the breadth-first search, and a formal proof of the running time of
the Edmonds-Karp algorithm.

5.3 Other algorithms
There are many different maximum flow algorithms that fall into the augmenting
path category, although we will see a different approach in the next section.

..s.

u

.

v

. t.
5/5

..
0/5

..

5/
5..

0/5
.

5/5

Figure 5.1: A graph with the flow and capacity of each edge shown as
flow/capacity. The marked path is a valid augmenting path from 𝑠 to 𝑡,
and by increasing the flow along it, we will push flow back from 𝑣 to 𝑢.

5.4. PUSH–RELABEL ALGORITHM 51

Algorithm 1 The Ford-Fulkerson max-flow algorithm
function Ford-Fulkerson(𝐺, 𝑠, 𝑡)

while there exists a path 𝑝 from 𝑠 to 𝑡 in the residual graph 𝐺𝑓 do
𝛼 ← min{𝑐𝑓(𝑢, 𝑣) ∶ (𝑢, 𝑣) ∈ 𝑝}
for all (𝑢, 𝑣) ∈ 𝑝 do

if (𝑢, 𝑣) ∈ 𝐸 then
𝑓(𝑢, 𝑣) += Δ𝑓

else
𝑓(𝑣, 𝑢) −= Δ𝑓 ▷ Push flow back

end if
end for

end while
end function

The algorithm of Dinitz, originally published in 1970, later improved on, and
described by the original author in [20], is a variant of the augmenting path algo-
rithm. It maintains a distance labeling 𝑑(𝑢) of the vertices 𝑢 ∈ 𝑉 in the graph,
where 𝑑(𝑢) is the shortest path from the 𝑠 to 𝑢 in the residual graph. This can
be computed with a simple breadth-first search. The next step is to construct a
blocking flow 𝑓 ′, using only edges in 𝐸′

𝑓 = {(𝑢, 𝑣) ∈ 𝐸𝑓 ∶ 𝑑(𝑢) + 1 = 𝑑(𝑣)}. The
blocking flow is such that if we augment the flow 𝑓 by 𝑓 ′, there is no longer any
paths from 𝑠 to 𝑡 following edges in 𝐸′

𝑓 . After the blocking flow 𝑓 ′ has been found
and added to 𝑓 , the distance labels are recalculated, and the label of the sink will
be increased by at least one.

Boykov and Kolmogorov present a variant of the augmenting path algorithm
in [21], specialized for the kinds of graphs occurring in graphical applications. It
will be presented in Section 5.5

5.4 Push–relabel algorithm
The push-relabel algorithm is a different approach to the maximum flow problem,
presented by Goldberg and Tarjan in [22]. Unlike the augmenting flow algorithms,
it does not maintain a valid flow 𝑓 in the graph at all times, but still obtains a
valid maximum flow when the algorithm terminates.

5.4.1 Preflow
Instead of maintaining a valid flow, we introduce the concept of a preflow by
relaxing the flow conservation constraint from earlier. We allow positive excess in
the vertices and the flow conservation constraint from before then becomes

52 CHAPTER 5. MAXIMUM FLOW

Preflow conservation: For all 𝑢 ∈ 𝑉 − {𝑠, 𝑡}

∑
𝑣∈𝑉

𝑓(𝑣, 𝑢) ≥ ∑
𝑣∈𝑉

𝑓(𝑢, 𝑣), (5.7)

i.e., for any vertex except the source and the sink, the flow into the vertex
must greater or equal to the flow out of the vertex.

As in most of the cited push-relabel literature, we define 𝑁 = |𝑉 |, and for all
vertices 𝑢 ∈ 𝑉 we define the excess

𝑒(𝑢) = ∑
𝑣∈𝑉

𝑓(𝑣, 𝑢) − ∑
𝑣∈𝑉

𝑓(𝑢, 𝑣), (5.8)

which represents the amount of flow which disappears in vertex 𝑢. Equivalent
to the preflow conservation constraint is stating that 𝑒(𝑢) ≥ 0 for all vertices
𝑢 ∈ 𝑉 − {𝑠, 𝑡}.

In addition to the flow, we maintain a height map 𝑑 ∶ 𝑉 → ℕ that satisfies
𝑑(𝑡) = 0, and for every edge (𝑢, 𝑣) in the residual graph, i.e. every edge with
𝑐𝑓(𝑢, 𝑣) > 0, we require that 𝑑(𝑢) ≤ 𝑑(𝑣) + 1. For all vertices 𝑢, the label 𝑑(𝑢)
will be a lower bound on the length from 𝑢 to 𝑡 in 𝐺𝑓 which is why it is also often
called a distance labeling.

A vertex 𝑢 is active if 𝑢 ∈ 𝑉 − {𝑠, 𝑡}, it has positive excess (𝑒(𝑢) > 0) and
𝑑(𝑢) < 𝑁 . These are the vertices we want to operate on to increase the preflow.

5.4.2 Basic operations
The algorithm performs two basic operations, the push and relabel operations,
while always maintaining a valid preflow 𝑓 and a valid distance labeling 𝑑.

The push procedure

The push procedure moves excess flow from an active vertex along an edge (𝑢, 𝑣) ∈
𝐸𝑓 for which 𝑑(𝑢) = 𝑑(𝑣) + 1, i.e. to a vertex with a smaller distance label. We
call such edges admissible. See Algorithm 2 for a pseudocode implementation of
the push operation.

Assuming that 𝑓 is a valid preflow, it is easy to verify that the preflow 𝑓 and
labeling 𝑑 remain valid after running the push procedure on some admissible edge
(𝑢, 𝑣).

The relabel procedure

The relabel procedure is our tool for changing the distance labels of the vertices.
It changes the label of a vertex to the greatest possible value, which is one more

5.4. PUSH–RELABEL ALGORITHM 53

Algorithm 2 The push procedure of the Push-Relabel algorithm.
function Push(𝑢, 𝑣)

Δ𝑓 ← min(𝑐𝑓(𝑢, 𝑣), 𝑒(𝑢))
if (𝑢, 𝑣) ∈ 𝐸 then

𝑓(𝑢, 𝑣) += Δ𝑓
else

𝑓(𝑣, 𝑢) −= Δ𝑓 ▷ Push flow back
end if ▷ Excess 𝑒(𝑢) and 𝑒(𝑣) will also change

end function

than the lowest label among its neighbors in the residual graph. See Algorithm 3
for a pseudocode implementation.

Algorithm 3 The relabel procedure of the Push-Relabel algorithm
function Relabel(𝑢)

if there is a 𝑣 ∈ 𝑉 such that (𝑢, 𝑣) ∈ 𝐸𝑓 then
𝑑(𝑢) ← min{𝑑(𝑣), ∀𝑣 ∈ 𝑉 ∶ (𝑢, 𝑣) ∈ 𝐸𝑓} + 1

else
𝑑(𝑢) ← 𝑁 ▷ 𝑢 becomes inactive

end if
end function

If 𝑑 was a valid labeling before running the relabel procedure, then we still
have 𝑑(𝑢) ≤ 𝑑(𝑣) + 1 for all neighbors 𝑣 of 𝑢 in the residual graph, and 𝑑 remains
a valid labeling. The capacity constraint and preflow constraint remain satisfied
assuming they were satisfied before the procedure was started.

5.4.3 Final algorithm
These basic procedures are then applied to active vertices and admissible edges
until we obtain our minimum cut. We will see later that when there are no more
active vertices, we can extract the minimum cut from the graph.

In the first phase of the algorithm we initialize a valid preflow and distance
labeling by saturating all edges out of the source 𝑠, and then setting its distance
label 𝑑(𝑠) = 𝑁 . We then apply the push and relabel procedures where applicable
until there are no more active vertices and a maximum preflow is obtained.

A vertex 𝑢 can only be successfully relabeled to obtain a new label if the out-
going edges of 𝑢 in the residual graph have changed since the previous relabeling.
This is why the push and relabel procedures often are combined into a discharge
procedure as shown in Algorithm 4. When it is run on an active vertex 𝑢, we

54 CHAPTER 5. MAXIMUM FLOW

push as much as possible of the excess flow to other vertices before the vertex is
relabeled.

Algorithm 4 The discharge procedure of the Push-Relabel algorithm
function Discharge(𝑢)

for all 𝑣 ∈ 𝑉 such that (𝑢, 𝑣) ∈ 𝐸𝑓 do
if 𝑐𝑓(𝑢, 𝑣) > 0 and 𝑑(𝑢) = 𝑑(𝑣) + 1 then Push(𝑢, 𝑣)
end if

end for
if 𝑒(𝑢) > 0 then Relabel(𝑢)
end if

end function

In the second phase of the algorithm this maximum preflow is turned into a
maximum flow by returning excess flow which did not reach the sink from inside
the graph back to the source. We can skip this part of the algorithm, as it is
possible to identify a minimum cut as soon as the first phase is finished, and the
following theorem allows us to do that.

Theorem 5.2 (Cut identification). Given a graph 𝐺 = (𝑉 , 𝐸, 𝑐), assume that
the first phase of the push-relabel algorithm has terminated so that no more active
vertices remain. Then there exists a 𝑘 ∈ {1, … , 𝑁 − 1} such that there is no
vertex with label 𝑘. For every such 𝑘 the vertex sets 𝑆 = {𝑢 ∈ 𝑉 ∶ 𝑑(𝑢) > 𝑘} and
𝑇 = {𝑢 ∈ 𝑉 ∶ 𝑑(𝑢) < 𝑘} define a minimum cut 𝐶 = (𝑆, 𝑇) in 𝐺.

Proof. There are 𝑁 vertices, the source has label 𝑁 and the sink has label 0, and
the 𝑁 − 2 remaining vertices can not occupy all the 𝑁 − 1 labels in {1, … , 𝑁 − 1},
so there must exist an 𝑘 as described.

There can be no edge (𝑢, 𝑣) ∈ 𝐸𝑓 such that 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇 , as this would
imply 𝑘 ≤ 𝑑(𝑢) − 1 ≤ 𝑑(𝑣) < 𝑘. From the construction of 𝐸𝑓 we now know that
all edges in 𝐸 from 𝑆 to 𝑇 are saturated, and all edges from 𝑇 to 𝑆 carry no
flow. This implies the capacity of the cut is equal to the flow through the cut, i.e.
𝑐(𝑆, 𝑇) = 𝑓(𝑆, 𝑇).

Since the first phase of the algorithm has terminated, there can be no active
vertices, and therefore no excess in 𝑇 , except for the sink. If all flow excess in
vertices in 𝑆 is returned to the source, we can apply the max-flow min-cut theorem
to conclude that 𝐶 = (𝑆, 𝑇) is a minimum 𝑠-𝑡-cut, since the cut capacity is equal
to the flow.

We will see later that with the gap relabeling heuristic, there will always be a
gap at label 𝑘 = 𝑁 − 1 such that we can construct our cut by taking 𝑆 = {𝑢 ∈
𝑉 ∶ 𝑑(𝑢) ≥ 𝑁}.

5.4. PUSH–RELABEL ALGORITHM 55

Note that the vertices in 𝑆 are vertices earlier described as being on the source
side of the cut, as no additional flow can go from these vertices to the sink.

5.4.4 Complexity
In their original article [22], Goldberg and Tarjan analyze the complexity of the
push-relabel algorithm by considering the maximum number of basic operations
we can possibly do before the algorithm terminates.

The number of relabelings is in 𝑂(|𝑉 |2) since every time the procedure is
applicable to a vertex 𝑢, the label 𝑑(𝑢) increases by at least one.

The number of saturating pushes is in 𝑂(|𝑉 | |𝐸|). When a push along (𝑢, 𝑣) is
saturating, the label of 𝑣 has to increase with at least 2 before a push can saturate
the same edge (in the opposite direction). Since the number of relabelings of
a single vertex is bounded by |𝑉 |, and we have |𝐸| edges, this gives the stated
number of saturating pushes.

The number of non-saturating pushes is the most complicated to bound, and
will also make up the asymptotic running time of the algorithm. The idea is to
define

𝜙 = ∑
𝑢 active

𝑑(𝑢), (5.9)

and look at how much this number changes throughout the algorithm. It starts at
zero and ends at zero. Every non-saturating push from 𝑢 to 𝑣 makes 𝜙 decrease
by at least one since it makes 𝑢 inactive (but might activate 𝑣). The total increase
in 𝜙 due to relabelings is less than |𝑉 |2. A saturating push from 𝑢 to 𝑣 increases
𝜙 by at most |𝑉 |, since 𝑣 might become active.

Even if 𝜙 is always increased by relabelings and saturating pushes, we can
bound the number of non-saturating pushes by

|𝑉 |2 + |𝑉 | 𝑐 |𝑉 | |𝐸|⏟
#(saturating pushes)

(5.10)

which means that in the general case, the algorithm has a complexity of 𝑂(|𝐸| |𝑉 |2).

5.4.5 Vertex selection rules
Until now we have stated that the discharge procedure is run on active vertices
until there are no more active vertices left. The choice of the order in which to
discharge these active vertices remain, and multiple possibilities exist.

The «First In, First Out» (FIFO) approach is to always maintain a queue of
active vertices. When the vertex from the beginning of the queue is discharged,
other vertices might become active, and these are added at the end of the queue.

56 CHAPTER 5. MAXIMUM FLOW

The original article of Goldberg and Tarjan [22] contains a proof that this selection
rule gives a complexity of 𝑂(|𝑉 |3), which can be very good if you have a dense
graph.

Using the highest level selection rule one always discharges the active vertex
with the largest distance label. Goldberg and Tarjan state that this rule also gives
a complexity of 𝑂(|𝑉 |3) while this bound is improved to 𝑂(|𝑉 |2 √|𝐸|) in an article
by Cheriyan and Maheshwari [23].

These are complexity bounds, and the actual running time of the algorithm,
which can only be determined by implementing it and running it, varies a lot with
the structure of the input graph.

Cherkassky and Goldberg describe the algorithm along with different selection
rules, heuristics and their implementation in [24].

5.4.6 Heuristics
Different heuristics exist that can speed up the algorithm considerably. Being
heuristics, they are not guaranteed to work, and might perform differently on dif-
ferent kinds of graphs. The most used heuristics are the gap and global relabeling
heuristics, both aiming to reduce the total number of relabeling steps.

The gap relabeling heuristic aims to find a label 𝑘 as in Theorem 5.2 such that
no vertex has that label. From vertices 𝑢 with 𝑑(𝑢) > 𝑘, there are no unsaturated
edges going to vertices with smaller distance labels, so no more flow can ever find
its way from these vertices to the sink. These vertices are therefore given the label
𝑁 and never considered again as they will never become active. Algorithm 5 shows
a pseudocode representation of what is done once a gap 𝑘 is found.

Algorithm 5 The gap procedure of the Push-Relabel algorithm
function Gap(𝑘)

for all 𝑢 ∈ 𝑉 such that 𝑑(𝑢) > 𝑘 do
𝑑(𝑢) ← 𝑁

end for
end function

The preflow and capacity constraints are still valid after the gap relabeling
procedure, as only the labels 𝑑 are changed. For the labeling 𝑑 one has to verify
that 𝑑(𝑢) ≤ 𝑑(𝑣) + 1 for every edge (𝑢, 𝑣) ∈ 𝐸𝑓 in the residual network. If none,
both, or only 𝑣 is relabeled, this is trivial. It is not possible that only 𝑢 would
be relabeled, as this would imply that 𝑑(𝑢) ≥ 𝑑(𝑣) + 2 which is not a valid initial
labeling.

When running the push-relabel algorithm with the gap heuristic, we can be
sure that there will never be a vertex 𝑢 with label 𝑑(𝑢) = 𝑁 − 1 at the end of

5.4. PUSH–RELABEL ALGORITHM 57

.. 𝜆.

𝐹 𝑥
𝜆 (1)

.
𝑓𝑥

. 𝑓𝑥 − 1

Figure 5.2: A sketch of how the fidelity energy term 𝐹 𝑥
𝜆 (1) in (4.15)

increases monotonically with 𝜆.

the algorithm, i.e. we know that there will always be a gap at label 𝑁 − 1. This
can be seen using the same reasoning as in Theorem 5.2, because if there was a
vertex with label 𝑁 − 1, there would only be 𝑁 − 3 vertices possibly having labels
in {1, … , 𝑁 − 2}, so a gap must exist somewhere in that interval. When using the
gap relabeling heuristic, such a gap can not exist, so we can conclude that there
is no vertex with label 𝑁 − 1.

Using Theorem 5.2 we can then conclude that the sets 𝑆 = {𝑢 ∈ 𝑉 ∶ 𝑑(𝑢) ≥ 𝑁}
and 𝑇 = 𝑉 − 𝑆 form a minimum cut of the graph.

5.4.7 Parametric push-relabel algorithm
Now we have an algorithm for finding a minimum 𝑠-𝑡-cut in a graph, so let’s return
to the graph constructed in Section 4.2.3. For every level 𝜆 ∈ {0, … , 𝐿 − 1} we
want to find a minimum 𝑠-𝑡-cut which gives us the thresholded image 𝑢𝜆. These
can then hopefully be stacked together to form the final image 𝑢.

Graph reuse

Solving 𝐿 separate minimum cut problems seems like a lot of work, but when using
the push-relabel algorithm we will, if we do things in the right order, be able to
reuse the graph when going from one label to the next.

Going back to the graph representations in Figure 4.7 and Figure 4.8 we know
that only the capacity of edges from sub-graphs representing the fidelity term
depend on our level parameter 𝜆. From the expression in (4.26), visualized in Fig-
ure 5.2, we see that the energy term 𝐹 𝑥

𝜆 (1) increases monotonically with increasing
𝜆 parameter. Let 𝑢, 𝑣 ∈ 𝑉 − {𝑠, 𝑡}. Since the edges in Figure 4.7 now are the only
ones depending on 𝜆, the following is true for decreasing values of 𝜆

58 CHAPTER 5. MAXIMUM FLOW

Edges from 𝑠 to 𝑢: As seen in Figure 4.7b the capacity of these edges will in-
crease monotonically with decreasing 𝜆 parameter.

Edges from 𝑢 to 𝑣: These edges do not depend on 𝜆 and will remain unchanged.

Edges from 𝑣 to 𝑡: As seen in Figure 4.7a the capacity of these edges will de-
crease monotonically with decreasing 𝜆 parameter.

After running the push-relabel algorithm for 𝜆 = 𝑘, we are left with a graph
𝐺 = (𝑉 , 𝐸, 𝑐), a preflow 𝑓 and a labeling 𝑑. To obtain the graph for 𝜆 = 𝑘 − 1
we have to change the capacity of two different kinds of edges, and this is done in
the following way to keep the capacity, preflow and labeling constraints satisfied.

Edges from 𝑠 to 𝑢: The capacity 𝑐(𝑠, 𝑢) is increased, and the flow is set to be
equal to the capacity 𝑓(𝑠, 𝑢) = 𝑐(𝑠, 𝑢). The vertex 𝑢 might have an increased
excess 𝑒(𝑢), which might in turn make it active.

Edges from 𝑣 to 𝑡: The capacity 𝑐(𝑣, 𝑡) is decreased. If it is decreased to a value
below the current flow value, we set 𝑓(𝑣, 𝑡) = 𝑐(𝑣, 𝑡) which will decrease the
excess of the sink 𝑡, and increase the excess of 𝑣.

None of these actions will create new edges in the residual graph, and we do
not change the labeling 𝑑, so the labeling constraints are also satisfied in the new
graph.

Through this procedure we have easily created the graph for 𝜆 = 𝑘 − 1, and
the distance labels remain the same. As the distance labels always increase mono-
tonically, we have a head start compared to the case where we reset the flow and
labels.

Output image construction

We mentioned already in Chapter 4 that in order to be able to construct our
output image 𝑢, the thresholded images 𝑢𝜆 would have to stack one on top of the
other. Because of the reuse of the distance labels between the iterations of the
push-relabel algorithm, we can guarantee that this is possible.

Consider two subsequent runs of the push-relabel algorithm, for labels 𝜆 and
𝜆 − 1 ending with distance labels 𝑑𝜆 and 𝑑𝜆−1 respectively. We already know
that the distance labels 𝑑 are monotonically increasing. This means that the set
𝑆 = {𝑢 ∈ 𝑉 ∶ 𝑑(𝑢) ≥ 𝑁} is increasing in size, more precisely, we have the inclusion

{𝑢 ∈ 𝑉 ∶ 𝑑𝜆(𝑢) ≥ 𝑁} ⊆ {𝑢 ∈ 𝑉 ∶ 𝑑𝜆−1(𝑢) ≥ 𝑁}. (5.11)

For a pixel 𝑥 ∈ 𝑆 we will set 𝑢𝜆
𝑥 = 1, which together with the previous inclusion

property implies
𝑢𝜆

𝑥 ≤ 𝑢𝜆−1
𝑥 (5.12)

5.4. PUSH–RELABEL ALGORITHM 59

for all 𝑥 ∈ 𝒢. Being equivalent with the inequality in (4.16), this means our
algorithm produces stackable thresholded images 𝑢𝜆.

We then construct our output image 𝑢 by giving each pixel the value

𝑢𝑥 = min{𝜆 ∈ {0, … , 𝐿 − 1} ∶ 𝑢𝜆
𝑥 = 0}. (5.13)

This marks the end of the description of the implemented algorithm, but we will
further discuss some possible improvements.

5.4.8 Divide and conquer
The possibility of re-using the graph between separate level is a very nice property
of the push-relabel algorithm, but there are further room for improvements. Con-
sider one pixel 𝑥 with value 𝑢𝑥, and imagine we only wanted to find the value of
this pixel. One could go through all pixel values 𝜆 ∈ (𝐿 − 1, … , 0), and see when
𝑢𝜆

𝑥 changes from 1 to 0, just as we do for all the pixels in the algorithm above.
Ignoring graph re-use this would have us solve 𝑂(𝐿) maximum flow problems.

Improving on this we could employ the idea of binary search to find the value
of 𝑢𝑥 in only 𝑂(log2 𝐿) time. After finding one cut, we know whether 𝑢𝑥 is above
or below the current 𝜆 value, and by choosing 𝜆 as the midpoint of the current
possible range of 𝑢𝑥, we can cut the search space in half for each iteration of the
algorithm.

We can extend this idea to the problem of finding all pixel values. Instead of
running the algorithm for successively decreasing values of 𝜆, we choose some 𝜆
in the middle of the range {0, … , 𝐿 − 1}. The cut we obtain consists of two sets
𝑆 = {𝑢 ∈ 𝑉 ∶ 𝑑(𝑢) ≥ 𝑁} and 𝑇 = 𝑉 − 𝑆. We know that no more flow can
be sent from 𝑆 to 𝑇 , even if we decrease the value of 𝜆 and adjust the capacities
accordingly.

The idea is now that we have halved the possible 𝜆 interval for all pixels.
We continue by considering the two sets 𝑆 and 𝑇 separately, and applying the
algorithm recursively, at each time halving the 𝜆 interval until we have the value
of every pixel.

Combining the divide and conquer approach with the parametric push-relabel
algorithm is a bit problematic. For all pixels 𝑥 ∈ 𝑇 we know that 𝑢𝑥 ≤ 𝜆, and we
can reuse the graph when decreasing 𝜆. However for pixels 𝑥 ∈ 𝑆, we seek to find
𝑢𝑥 > 𝜆, meaning we have to increase 𝜆 which does not allow graph re-use.

Goldfarb and Yin [25] have found that the divide and conquer approach only
yields improved performance when using the 𝐿2 norm in the fidelity term.

See [26], [27] and [25] for more information.

60 CHAPTER 5. MAXIMUM FLOW

5.5 Boykov–Kolmogorov algorithm

Algorithm 6 The Boykov–Kolmogorov maximum flow algorithm
function BoykovKolmogorov(𝐺, 𝑠, 𝑡)

𝐴 ∶= {𝑠, 𝑡}, 𝑂 ∶= ∅, 𝑆 = {𝑠}, 𝑇 = {𝑡}
𝑠.color = 𝑆, 𝑡.color = 𝑇
while True do

𝑒 ← Grow(𝐺, 𝐴)
if not 𝑒 then

break
end if
Augment(𝐺, 𝑠, 𝑡, 𝑒, 𝑂)
Adopt(𝐺, 𝑠, 𝑡, 𝑂)

end while
end function

A maximum flow algorithm specialized for the type of graphs found in imaging
applications is described by Boykov and Kolmogorov in [21]. Their algorithm is an
augmenting path algorithm where the paths are found using trees that keep track
of possible partial paths.

The idea of the algorithm is to always maintain the structure of two trees, one
rooted in the source and one rooted in the sink, which are built up using only
edges that can carry additional flow. The algorithm consists of different phases,
one being the grow phase, where the trees are grown by adding additional edges.
When an unsaturated edge connecting the two trees are found, the augment phase
starts. In this phase, an augmenting path through the trees is recovered, and the
flow is augmented. Some of the edges in the trees may then become saturated,
and can no longer be a part of their tree. The vertices they connect to the tree
become orphans which in the adopt phase are adopted back into their trees, or
alternatively freed from their tree connection.

There is one tree denoted 𝑆 with the source 𝑠 as its root, and another tree
denoted 𝑇 with the sink 𝑡 as its root. These trees are disjoint, and all edges in the
tree 𝑆 can carry flow towards the leafs of the tree, while all edges in 𝑇 can carry
flow towards the sink 𝑡.

A vertex can either be part of one of these trees, or be a free vertex, and we
write

𝑢.color =
⎧{
⎨{⎩

𝑆 if 𝑢 ∈ 𝑆
𝑇 if 𝑢 ∈ 𝑇
Free otherwise.

(5.14)

5.5. BOYKOV–KOLMOGOROV ALGORITHM 61

The vertices in the trees 𝑆 and 𝑇 are either active or passive, and we write 𝑢 ∈ 𝐴
if 𝑢 is active. The active vertices are those at the boundary of the tree, which
can possibly connect to other vertices to grow the tree. The passive vertices are
internal in the tree, and edges to their neighbors are either a part of the tree, or
completely saturated.

The main loop of the algorithm is as shown in Algorithm 6. In the grow
procedure, the trees are grown from their active vertices until a new path is found.
The flow is then augmented along this path in the augment procedure, and orphan
vertices might be created. These orphan vertices are then either joined back into
their respective trees, or become free, in the adopt procedure.

Algorithm 7 The grow procedure of the Boykov–Kolmogorov maximum flow algo-
rithm

function Grow(𝐺, 𝐴)
while |𝐴| ≠ 0 do

𝑢 ← one node from 𝐴
for all 𝑣 such that treeCap(𝑢, 𝑣) > 0 do

if 𝑣.color = Free then
𝑣.color ← 𝑢.color
𝑣.parent ← 𝑢
𝐴 ∶= 𝐴 ∪ {𝑣}

else if 𝑣.color ≠ 𝑢.color then
return 𝑒 ∶= (𝑢, 𝑣)

end if
end for
Remove 𝑢 from 𝐴

end while
return False

end function

The grow procedure is shown in Algorithm 7. It goes through the set of active
vertices 𝐴 to try to expand the trees 𝑆 and 𝑇 . When considering an active vertex
𝑢 ∈ 𝑆, we want to grow by finding vertices 𝑣 such that 𝑐𝑓(𝑢, 𝑣) > 0, while when
considering an active vertex 𝑢 ∈ 𝑇 , we want to grow by finding vertices 𝑣 such
that 𝑐𝑓(𝑣, 𝑢) > 0. This is why the treeCap is introduced which is defined as

treeCap(𝑢, 𝑣) = {𝑐𝑓(𝑢, 𝑣) if 𝑢 ∈ 𝑆,
𝑐𝑓(𝑣, 𝑢) if 𝑢 ∈ 𝑇 . (5.15)

Thus if a non-saturated edge is found from an active vertex 𝑢 to a free vertex 𝑣,
then 𝑣 is added to the tree of 𝑢. The tree structure is stored by keeping a parent
attribute in each non-free node, such that for example 𝑣.parent = 𝑢.

62 CHAPTER 5. MAXIMUM FLOW

If a non-saturated edge is found from an active vertex 𝑢 to a vertex 𝑣 in the
other tree, the two trees connect, and we can return the edge 𝑒 since we have an
augmenting path. Note that if this happens, the vertex 𝑢 is still active. It only
becomes passive when all neighbors are considered without yielding an augmenting
path.

Algorithm 8 The augment procedure of the Boykov–Kolmogorov maximum flow
algorithm

function Augment(𝐺, 𝑠, 𝑡, 𝑒, 𝑂)
𝑝 ← path from 𝑠 to 𝑡 through 𝑒 ▷ through the trees 𝑆 and 𝑇
Δ𝑓 ← min{𝑐𝑓(𝑢, 𝑣) ∶ (𝑢, 𝑣) ∈ 𝑝}
for all (𝑢, 𝑣) ∈ 𝑝 do

𝑓(𝑢, 𝑣) += Δ𝑓
𝑓(𝑣, 𝑢) −= Δ𝑓
if 𝑐𝑓(𝑢, 𝑣) = 0 then

if 𝑢.color = 𝑣.color = 𝑆 then
𝑣.parent = Null
𝑂 ∶= 𝑂 ∪ {𝑣}

else if 𝑢.color = 𝑣.color = 𝑇 then
𝑢.parent = Null
𝑂 ∶= 𝑂 ∪ {𝑢}

end if
end if

end for
end function

The augment procedure finds the augmenting path going through the tree 𝑆,
the edge 𝑒 and the tree 𝑇 . The maximal possible flow is then sent along this path.
At least one edge will then become saturated. If a saturated edge occurs in the
trees 𝑆 or 𝑇 , the edge terminal farthest from the tree root is marked as an orphan.
Note that even if a whole subtree is disconnected from the main tree, only the
root of this subtree is marked as an orphan. The adopt procedure will take care
of either reconnecting, or freeing all the vertices in the disconnected subtree.

The adopt procedure processes all the vertices in the set of orphans 𝑂. These
vertices are either single vertices, or roots of disconnected subtrees. For an or-
phaned vertex 𝑢 we look through its neighbors to find a possible parent vertex 𝑣.
It should belong to the same tree as 𝑢, and also satisfy treeCap(𝑣, 𝑢) > 0. In
addition, 𝑣 should be connected to one of the tree roots 𝑠 or 𝑡. This keeps us from
connecting to other orphaned vertices or subtrees, and is checked by the procedure
treeOrigin(𝑣), which follows the parent information until reaching either 𝑠, 𝑡 or
an orphaned vertex.

5.5. BOYKOV–KOLMOGOROV ALGORITHM 63

Algorithm 9 The adopt procedure of the Boykov–Kolmogorov maximum flow algo-
rithm

function Adopt(𝐺, 𝑠, 𝑡, 𝑂)
while |𝑂| ≠ 0 do

𝑢 ← one node from 𝑂
Remove 𝑢 from 𝑂
found ← False
for all 𝑣 such that treeCap(𝑣, 𝑢) > 0 do

if 𝑢.color ≠ 𝑣.color then
continue

end if
orig ← treeOrigin(𝑣)
if orig ≠ 𝑠 and orig ≠ 𝑡 then

continue
end if
found ← True
𝑢.parent ← 𝑣
break

end for
if found ≠ True then

for all 𝑣 such that 𝑢.color = 𝑣.color do
if treeCap(𝑣, 𝑢) > 0 then

𝐴 ∶= 𝐴 ∪ {𝑣}
end if
if 𝑣.parent = 𝑢 then

𝑂 ∶= 𝑂 ∪ {𝑣}
𝑣.parent ← Null

end if
𝑢.color ← Free
𝐴 ∶= 𝐴 − {𝑢}

end for
end if

end while
end function

64 CHAPTER 5. MAXIMUM FLOW

..s.

𝑢𝜆
𝑥

.

t

.

max{𝐹 𝑥
𝐿−1(1), 0} − 𝐹 𝑥

𝜆 (1)

.

max{𝐹 𝑥
𝐿−1(1), 0}

Figure 5.3: A modified version of the subgraph corresponding to the fi-
delity term 𝐹 𝑥

𝜆 (𝑢𝜆
𝑥) that has positive and non-decreasing edges with decreas-

ing 𝜆.

If a potential parent 𝑣 of 𝑢 is not found, 𝑢 becomes a free vertex. All vertices
that had 𝑢 as its parent are orphaned, and are thus treated by the adopt procedure
later. Vertices that are in one of the trees 𝑆 or 𝑇 , and have a non-saturated edge
to this newly freed vertex 𝑢, become active.

When no more active vertices remain, there are no more possible augmenting
paths, and the algorithms terminates with a maximum flow. A proof of correctness
can be found in Kolmogorov’s PhD thesis [28].

5.5.1 Graph reuse
As with the push-relabel algorithm described earlier, it is not necessary to com-
pletely restart the Boykov–Kolmogorov algorithm for every level of the image, but
we can reuse the graph and the trees 𝑆 and 𝑇 in successive runs.

Since this is algorithm does not deal with the relaxed preflow concept, the
updates from one level to the next have to be done in a different way. We can
no longer decrease the capacity of edges, as this could break the flow conservation
constraint. However, the graph construction in Section 4.2.2 did allow for the
addition of an arbitrary constant to all the edges of the sub-graph. Thus the
construction in Figure 5.3 is also valid. We have added the non-negative constant
max{𝐹 𝑥

𝐿−1(1), 0} to all the edges of the graph in Figure 4.7b. As 𝜆 goes from 𝐿−1
to 0 both edges stay non-negative. The edge from 𝑢𝑥

𝜆 to 𝑡 is non-decreasing with
decreasing 𝜆 parameter.

This construction allows us to update the capacities of the edges, while re-
taining the flow and the trees 𝑆 and 𝑇 . A nice property that follows is that the
partition (𝑆, 𝑉 − 𝑆) is after each run a minimum cut since the tree 𝑆 has been

5.5. BOYKOV–KOLMOGOROV ALGORITHM 65

Table 5.1: Each row represents one of the two possible values of 𝑢𝜆
𝑥 ∈

{0, 1}. The functional 𝐹 𝑥
𝜆 (𝑢𝜆

𝑥) and minimum cut obtaining this configura-
tion is shown. The last column shows the capacities of the cut for the graph
construction in Figure 5.3. We verify that the cut capacities are equal to
the functional value, plus a constant.

𝑢𝜆
𝑥 𝐹 𝑥

𝜆 (𝑢𝜆
𝑥) Min. cut (𝑆, 𝑇) Graph cut cap.

0 0 ({𝑠}, {𝑢𝜆
𝑥, 𝑡}) max{𝐹 𝑥

𝐿−1(1), 0} − 𝐹 𝑥
𝜆 (1)

1 𝐹 𝑥
𝜆 (1) ({𝑠, 𝑢𝜆

𝑥}, {𝑡}) max{𝐹 𝑥
𝐿−1(1), 0}

grown as much as possible. Further, no vertex already in the tree 𝑆 will leave 𝑆
when the trees are updated and algorithm is run for lower 𝜆 values. This can be
seen from the fact that if 𝑢 is in 𝑆 and the algorithm has terminated, all paths
from 𝑠 to 𝑡 going through 𝑢 have a saturated edge somewhere after 𝑢. For all
these paths, the capacity will only change for edges before 𝑢, as we only change
the capacity of edges (𝑠, 𝑣). Thus these saturated edges will stay saturated, and 𝑢
will stay in 𝑆.

5.5.2 Performance improvements
There are several open choices in the implementation of the algorithm, for example
the order in which active vertices are processed. As recommended in [21], we have
implemented a «First-In-First-Out» queue. This ensures that at least the first
augmenting path found is a shortest path, although later the distance information
is lost in the adoption stage.

In the adoption stage it is possible, and perhaps preferable to seek a possible
parent that is closest to the root of the tree, and adopt that vertex as parent,
instead of the first one found.

Because of the particular graph construction, all vertices except 𝑠 and 𝑡 are
connected directly to 𝑠 and 𝑡. Thus there are as many two-edged paths from 𝑠 to
𝑡 as there are pixels in the image. When increasing the capacity of edges (𝑣, 𝑡), a
quick sweep over these two-edged paths to send any possible flow may speed up
the algorithm.

Chapter 6
Results

In the previous chapters we have carefully constructed a method always trying to
argue how the choices we make can have a positive impact on the image restoration
results. The anisotropic total variation is the main advance from my project work
[1], and we would like to see how the introduction of the anisotropy affects the
performance of the restoration algorithm.

6.1 Tensor parameters
The anisotropy was introduced into the total variation in order to lessen the reg-
ularization applied across what we know, or at least are pretty sure to be edges
in the image. Before considering the anisotropy tensor construction described ear-
lier, we will look at how a simple pre-described tensor affects the regularization.
Imagine a tensor which is a diagonal matrix 𝐴 = diag(1, 𝜖), where 𝜖 ≪ 1 is small.
This would result in us down-weighting the size of ∇𝑢 in the 𝑦-direction, and thus
regularization mostly in the 𝑥-direction.

The results of this experiment can be seen in Figure 6.1, where a noisy picture
of a circle has been restored in two different ways, first with a uniform anisotropy
tensor 𝐴 = diag(1, 𝜖), and then with the tensor described in Section 3.1.1. We see
in Figure 6.1b that the uniform tensor gives a strong smoothing in the 𝑥-direction,
but no apparent smoothing in the 𝑦-direction.

It is useful to look at intermediate results to better understand what happens
and how the parameters affect our end result. In Figure 6.2 we show the different
stages of our image restoration algorithm. We start out with a section of the
much-used Lena test image in Figure 6.2a. The first step in the construction of
the structure tensor is to apply a Gaussian blur with parameter 𝜎, and the result
is shown in Figure 6.2b. The blurring is done so that the edge detector ∇𝑓𝜎,

66

6.1. TENSOR PARAMETERS 67

(a) Noisy circle. (b) Uniform tensor. (c) Normal tensor.

Figure 6.1: A noisy circle first restored using a uniform tensor, resulting
mostly in smoothing in the 𝑥-direction. Then restored using the tensor
described in Section 3.1.1.

(a) Lena’s eye. (b) Smoothed. (c) Edge detector.

(d) Anisotropy tensor. (e) Anisotropy tensor. (f) Restored Lena.

Figure 6.2: The different stages of the restoration algorithm, showing the
original image, the smoothed image, the edge detector, two visualizations
of the anisotropy tensor, and finally the restored image.

68 CHAPTER 6. RESULTS

Figure 6.3: Color wheel used for tensor visualization.

visualized as |∇𝑓𝜎|2 in Figure 6.2c, is not too sensitive to noise in the image. The
structure tensor is then constructed using ∇𝑓𝜎 and smoothed according to the
integration scale 𝜌. The resulting anisotropy tensor is visualized in Figure 6.2d.
In a selection of points, the eigenvectors of the tensor have been drawn. The length
of the vectors have been scaled by the corresponding eigenvalue.

Another way of visualizing the tensor is shown in Figure 6.2e. The brightness
and color in each point is decided by the size of the smallest eigenvalue and the
direction of its corresponding eigenvector using the color wheel in Figure 6.3. The
direction decides the color, while the brightness, which is the radius in the color
wheel, is set to 1/𝜎1 −1, where 𝜎1 is the smallest eigenvalue. Thus the stronger the
anisotropy, the brighter the color, while we expect uniform areas in the original
image to be black in the tensor visualization.

Finally, Figure 6.2f shows the restored image, and we see that it has been
heavily regularized. How the anisotropy affected the regularization is not obvious
however.

To look further into the effects of the parameters in our tensor construction we
have a constructed a zebra pattern of increasing width as shown in Figure 6.4. The
anisotropy introduced should in theory help reduce contrast loss in this situation,
by reducing the regularization applied in the 𝑥-direction across the edges. There is
however the question of how the different scales 𝜎 and 𝜌 affect the regularization.

In Figure 6.4b the noise scale is increased such that the edge detector, and thus
the anisotropy tensor, considers the finest lines to be noise rather than details.
Thus this left-most part is regularized to a smooth gray area.

The integration scale 𝜌 of (3.5) controls the size of the structures we want to
detect with our anisotropy tensor. In Figure 6.4c a high value for 𝜌 means that
the structure found in the inner square is almost completely ignored in favor of
the larger, more coherent structure around it.

Another visualization of the anisotropy tensor can be seen for a fingerprint
image in Figure 6.5. We see that the gradual changes in the direction of the

6.1. TENSOR PARAMETERS 69

(a) Original and blurred
with 𝜎 = 2.

(b) High noise scale of
𝜎 = 2 means thinnest
lines are regularized.

(c) Low noise scale 𝜎 =
0.2, but large integration
scale 𝜌 = 15 means inner
structure is ignored.

Figure 6.4: An example constructed to show the effects of the parameters
𝜎 and 𝜌 in the anisotropy tensor. The noise scale 𝜎 controls the smoothing
done before edge detection. The integration scale 𝜌 controls the size of the
structures considered by the tensor. Parameters: |𝒩| = 8, 𝛽 = 10000,
𝜔 = 100.

(a) Noisy fingerprint. (b) 𝜌 = 10 (c) 𝜌 = 20

Figure 6.5: A noisy fingerprint with the anisotropy tensor visualized for
different integration scales 𝜌. Parameters: |𝒩| = 32, 𝜎 = 3, 𝛽 = 15000,
𝜔 = 150.

70 CHAPTER 6. RESULTS

edges are captured by the tensor. Even the singularities in the fingerprint can be
identified by finding the dark spots, as the gradient of the image in these areas do
not point in one single direction.

6.2 Neighborhood stencils
The neighborhoods were introduced as a way to describe the discrete set of lines ℒ𝐷
in the discretization of the regularization term in Section 4.1.2. And as discussed,
we want the stencil to have many short edges, such that the angular differences
Δ𝜙, the inter-line distances Δ𝜌 and the edge lengths 𝑒 are “small.”

Figure 6.6 shows three images of different shapes that are heavily regularized
using different neighborhood stencils. In these results we see some of the artifacts
that may occur because of this particular discretization method. It is clear that
the stencil of size 8 prefers horizontal, vertical and 45° perimeters, such that the
circle in Figure 6.6a is shaped like an octagon when regularized in Figure 6.6b.
However the stencil of size 72 manages to keep the circular shape.

In Figure 6.6d, we see that the stencil of size 8 actually favors octagon-like
shapes, as the restored shape is the same octagon, just with some contrast loss.

The tilted square in Figure 6.6g, hints that a stencil of size 4 neighborhood
favors horizontal and vertical edges only. While the larger stencil of size 72 retains
the square shape but rounds the corners some.

As mentioned before, there is a discretization error which relates to the length
of the edges in the neighborhood. We approximated the number of times an edge
𝑒𝑎𝑏 crosses level set boundary by ∣𝑢𝜆

𝑎 − 𝑢𝜆
𝑏 ∣, an approximation that becomes worse

for long edges. Thus a larger neighborhood is not always better, even if it will
reduce the artifacts discussed above. In Figure 6.7, a noisy image of Lena has
been restored using two neighborhood stencils, and there are obvious differences.
For the stencil of size 72, the restored image still contains some pixel-sized noise.
An explanation can be found in Figure 6.8. We see why the length of a one-pixel
curve is underestimated by the Cauchy–Crofton formula when some of the edges
are long. Because many edges 𝑒𝑎𝑏 cross the curve cross while ∣𝑢𝜆

𝑎 − 𝑢𝜆
𝑏 ∣ = 0, thus

these edges are ignored completely in our perimeter approximation.
An additional demonstration that this problem mostly relates to small sized

noise is shown in Table 6.1. The table shows how our discrete Cauchy–Crofton
formula approximates the circumference of circles of different radii. Note that the
circumference approximated is that of an actual continuous circle 𝑢 ∶ ℝ2 → {0, 1}
and not a discrete representation. We see that the perimeter of the smallest circle
is grossly underestimated by the larger neighborhoods. Thus the perimeter of
one-pixel noise will be underestimated, and in turn the contribution to the total
variation by one-pixel noise will be smaller for large neighborhoods.

6.2. NEIGHBORHOOD STENCILS 71

(a) Circle. (b) |𝒩| = 8. (c) |𝒩| = 72.

(d) Octagon. (e) |𝒩| = 8. (f) |𝒩| = 72.

(g) Tilted square. (h) |𝒩| = 4. (i) |𝒩| = 72.

Figure 6.6: Different test images restored without anisotropy, different
neighborhoods and a large restoration parameter 𝛽. We see how different
neighborhood stencils introduce different artifacts.

72 CHAPTER 6. RESULTS

(a) |𝒩| = 16 (b) |𝒩| = 72

Figure 6.7: Noisy Lena restored using different neighborhood stencils.
Note how the large neighborhood introduces some pixel size artifacts.

..................................

Figure 6.8: A selection of edges contributing to the wrong approximation
of the length of a single pixel’s perimeter. The edges cross the perimeter
twice, but we count zero crossings in our approximation. This leads to
residual pixel noise in the restored image, when large neighborhood stencils
are used.

6.3. RESTORATION 73

Table 6.1: The circumference of circles of different radii 𝑟 measured by the
discretized Cauchy–Crofton formula in (4.15), using different neighborhood
stencils.

|𝒩| 𝑟 = 0.5 𝑟 = 1.5 𝑟 = 5.5 𝑟 = 50.5
4 3.14 9.42 34.56 317.3
8 2.68 10.27 33.94 317.5
16 2.08 9.97 34.59 316.8
32 1.63 9.24 34.44 317.2
48 1.40 8.40 34.29 317.3
72 1.21 7.45 33.95 317.2

2𝜋𝑟 3.14 9.42 34.56 317.3

6.3 Restoration
We have claimed that the anisotropic total variation will reduce some of the con-
trast loss one can encounter with regular total variation regularization. In Fig-
ure 6.9 the noisy fingerprint from Figure 6.5a has been restored three times with
different parameters. The first using regular total variation and 𝛽 = 15000, then
the second with 𝛽 = 15000 and anisotropy 𝜔 = 150. This gives an obvious contrast
enhancement, but it is however not obvious what this tells us about the quality of
the anisotropic algorithm. As previously mentioned, increasing the anisotropy (de-
creasing 𝜔) means decreasing the total amount of regularization applied, and less
contrast loss is an expected outcome of decreasing the regularization, disregarding
the anisotropy.

Thus in the last image we have also used 𝜔 = 150 but the restoration amount
𝛽 is increased such that the amount of noise removed ‖𝑢 − 𝑓‖𝐿2 is approximately
equal to the noise removed when using regular total variation in Figure 6.9a. By
visual inspection, the last image seems to have somewhat higher contrast. This
can be confirmed by calculating the standard deviation of the images, one of many
possible contrast measures, which gives 22.9, 37.9 and 27.2 respectively.

To further compare the three restored images, a single row has been extracted
from the three images and is shown against each other in Figure 6.10. Note that
although the results in Figure 6.9c look promising compared to Figure 6.9a, some
details in the singularity in the upper left is actually lost. The metric tensor is
approximately the identity matrix there, and thus an increased restoration pa-
rameter 𝛽 leads to increased smoothing compared to the regular total variation of
Figure 6.9a.

So far we have just inspected the restored image visually to judge the results of
the method. Depending on the application, we might have different wishes for the

74 CHAPTER 6. RESULTS

(a) Regular TV,
𝛽 = 15000,
‖𝑢 − 𝑓‖𝐿2 = 17022.

(b) Anisotropic TV
(𝜔 = 150), 𝛽 = 15000,
‖𝑢 − 𝑓‖𝐿2 = 15272.

(c) Anisotropic TV
(𝜔 = 150), 𝛽 = 20970,
‖𝑢 − 𝑓‖𝐿2 = 17022.

Figure 6.9: A noisy fingerprint restored using both isotropic and
anisotropic total variation to see how the contrast loss compares. Parame-
ters: |𝒩| = 32, 𝜎 = 3, 𝜌 = 10.

.. 0. 50. 100. 150. 200. 250.
50

.

100

.

150

.

200

.

Anisotropic TV, 𝛽 = 15000

.

Anisotropic TV, 𝛽 = 20970

.

Isotropic TV

Figure 6.10: A one-dimensional slice through the restored fingerprint im-
ages of Figure 6.9, showing a difference in the contrast.

6.3. RESTORATION 75

(a) Regular total variation,
𝛽 = 3000, ‖𝑢 − 𝑓‖𝐿2 =
9771

(b) Anisotropic TV,
𝛽 = 3000, 𝜔 = 110,
‖𝑢 − 𝑓‖𝐿2 = 9556

(c) Anisotropic TV,
𝛽 = 3191, 𝜔 = 110,
‖𝑢 − 𝑓‖𝐿2 = 9771

Figure 6.11: Lena with additive Gaussian noise (𝜎 = 30) shown restored
with different parameters, with corresponding method noise below. A slight
improvement in the amount of detail in the method noise is seen from (a)
to (c).

results. In many cases we just want to remove the noise 𝛿 in 𝑓 = 𝑢∗ + 𝛿 where the
captured image 𝑓 is assumed to consist of an actual image 𝑢∗ and an additional
noise term 𝛿. The noise removed by the restoration method, ̂𝛿 = 𝑓 − 𝑢∗ is called
the method noise. Any assumptions of properties we have on 𝛿, we optimally want

̂𝛿 to fulfill as well. Thus if we assumed independently distributed Gaussian noise,
we want to remove that kind of noise. An indication of problems can in that case
be if the method noise contains a lot of the details of the image.

Figure 6.11 shows the results after restoring a noisy Lena picture with different
parameters, and their method noise. We see that the method noise of Figure 6.11a
shows slightly more details than the anisotropic counterpart in Figure 6.11c.

Chapter 7
Discussion and conclusion

In this thesis we have seen how the total variation restoration method can be
extended using an anisotropy tensor, and how this fits into the discretization and
graph cut framework used in my project work [1]. The anisotropy tensor was
introduced in hopes of reducing the amount of regularization applied across edges
in the image, and by that preventing contrast loss. It was constructed based on
the structure tensor which contains local information about edge direction and
steepness.

In order to arrive at a discrete functional that could be minimized using the
same graph cut framework as in my project work [1], we transformed the contin-
uous functional using an anisotropic coarea and Cauchy–Crofton formula, both
described in detail. The resulting discrete functional was shown—under some
restrictions—to be consistent with the continuous functional.

The successive graph cuts, each giving a minimizer for a functional of a level
in the image, were found using maximum flow algorithms. The push-relabel algo-
rithm is know to have good all-round performance, while the Boykov–Kolmgorov
algorithm is tailored for the kinds of graphs appearing in imaging applications.
They were both described and implemented.

A goal was to give readers a good understanding of the inner workings of the
method, as well as all details necessary for a working implementation. Thus we
put effort into describing all steps going from the initial continuous formulation,
to the discretization, and finally the maximum flow algorithms.

One part of the thesis consists of studies of how the different parameters affect
the performance of the algorithm. We will not give any unified conclusion as to
whether this method is “better” or “worse” than the regular total variation method
it is based on, or other methods. In different applications the input images have
different properties, and one might also have different hopes for, and restrictions
on the output image. But we have seen how the anisotropy tensor affects the

76

77

restoration, and that it can have positive effects on contrast loss as well as method
noise.

Further work is possible in the study of the continuous problem, its well-
foundedness, and also the anisotropic coarea and Cauchy–Crofton formulas, which
can be studied on a measure-theoretic foundation. Also, the construction of the
anisotropy tensor offers choices that can be explored further.

Regarding the discretization, the choice of neighborhood stencil also allows
for further discussion, as approximation error can be traded for algorithm perfor-
mance. One particular possibility would be the application of non-uniform stencils
with varying stencil size depending on the local level of detail. This could give
better performance without sacrificing too much solution accuracy.

78 CHAPTER 7. DISCUSSION AND CONCLUSION

Bibliography

[1] Bjørn Rustad. Total variation based image restoration using graph cuts. 2014.

[2] Bernd Jähne. Digital Image Processing. Springer-Verlag, Berlin Heidelberg,
2005.

[3] Gilles Aubert and Pierre Kornprobst. Mathematical problems in image pro-
cessing, volume 147 of Applied Mathematical Sciences. Springer, New York,
second edition, 2006.

[4] Joachim Weickert. Anisotropic diffusion in image processing. European Con-
sortium for Mathematics in Industry. B. G. Teubner, Stuttgart, 1998.

[5] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1–
4):259–268, 1992.

[6] V. Caselles, A. Chambolle, and M. Novaga. Total variation in imaging. In
Otmar Scherzer, editor, Handbook of Mathematical Methods in Imaging, pages
1016–1057. Springer, New York, 2011.

[7] Raymond Chan, Tony Chan, and Andy Yip. Numerical methods and appli-
cations in total variation image restoration. In Handbook of Mathematical
Methods in Imaging, pages 1059–1094. Springer, 2011.

[8] Markus Grasmair and Frank Lenzen. Anisotropic total variation filtering.
Appl. Math. Optim., 62(3):323–339, 2010.

[9] C. Olsson, M. Byrod, N.C. Overgaard, and F. Kahl. Extending continuous
cuts: Anisotropic metrics and expansion moves. In Computer Vision, 2009
IEEE 12th International Conference on, pages 405–412, Sept 2009.

79

80 BIBLIOGRAPHY

[10] Joachim Weickert. Coherence-enhancing diffusion filtering. International
Journal of Computer Vision, 31(2-3):111–127, 1999.

[11] Robert E. Megginson. An introduction to Banach space theory, volume 183
of Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.

[12] Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier, and
Frank Lenzen. Variational methods in imaging, volume 167 of Applied Math-
ematical Sciences. Springer, New York, 2009.

[13] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties
of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL,
1992.

[14] Robert G Bartle. The Elements of Integration and Lebesgue Measure. John
Wiley & Sons, 1995.

[15] William P. Ziemer. Weakly differentiable functions, volume 120 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1989.

[16] Edwin Hewitt and Karl Stromberg. Real and abstract analysis. A modern
treatment of the theory of functions of a real variable. Springer-Verlag, New
York, 1965.

[17] Manfredo P. do Carmo. Differential geometry of curves and surfaces. Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1976.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, third edition, 2009.

[19] Vladimir Kolmogorov and Ramin Zabih. What energy functions can be min-
imized via graph cuts? In Computer Vision—ECCV 2002, pages 65–81.
Springer, 2002.

[20] Yefim Dinitz. Dinitz’ algorithm: the original version and Even’s version. In
Theoretical computer science, volume 3895 of Lecture Notes in Comput. Sci.,
pages 218–240. Springer, Berlin, 2006.

[21] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 26(9):1124–1137, 2004.

[22] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-
flow problem. J. Assoc. Comput. Mach., 35(4):921–940, 1988.

BIBLIOGRAPHY 81

[23] Joseph Cheriyan and S. N. Maheshwari. Analysis of preflow push algorithms
for maximum network flow. SIAM Journal on Computing, 18(6):1057–1086,
1989.

[24] B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel
method for the maximum flow problem. Algorithmica, 19(4):390–410, 1997.

[25] Donald Goldfarb and Wotao Yin. Parametric maximum flow algorithms for
fast total variation minimization. SIAM Journal on Scientific Computing,
31(5):3712–3743, 2009.

[26] Giorgio Gallo, Michael D. Grigoriadis, and Robert E. Tarjan. A fast paramet-
ric maximum flow algorithm and applications. SIAM J. Comput., 18(1):30–55,
1989.

[27] Dorit S. Hochbaum. An efficient algorithm for image segmentation, Markov
random fields and related problems. J. ACM, 48(4):686–701 (electronic), 2001.

[28] Vladimir Kolmogorov. Graph Based Algorithms for Scene Reconstruction from
Two or More Views. PhD thesis, Cornell University, September 2003.

[29] Bjørn Rustad. C++ implementation. https://github.com/burk/
image-restoration.

[30] G. Bradski. Opencv library. Dr. Dobb’s Journal of Software Tools, 2000.

https://github.com/burk/image-restoration
https://github.com/burk/image-restoration

82 BIBLIOGRAPHY

List of Figures

2.1 The stair-casing effect of regular total variation restoration 8
2.2 Heavily regularized fingerprint showing contrast loss 8

3.1 The edge detector |∇𝑓𝜎(𝑥)| . 13
3.2 Eigenvectors and eigenvalues of the structure and anisotropy tensors 15
3.3 Lower semi-continuous function 𝑓 17
3.4 The cut-off function 𝜂𝑟(𝑡) and its derivative 22
3.5 Line parametrization by angle and distance 24

4.1 The discrete set of lines ℒ𝐷 . 34
4.2 Visualization of the approximation error relating to long edges . . . 35
4.3 A visual argument for 𝛿2 = Δ𝜌 ‖𝑒‖ 36
4.4 Consistency argument for the line distance 𝜌 39
4.5 Consistency argument for the angle discretization 39
4.6 Consistent neighborhood construction 40
4.7 Graph construction for the fidelity term 𝐹 𝑥

𝜆 43
4.8 Graph construction for the regularization term 𝐹 𝑥,𝑦 45
4.9 The structure of the final graph construction 46

5.1 Augmenting flow example graph . 50
5.2 Fidelity energy 𝐹 𝑥

𝜆 (1) as a function of 𝜆 57
5.3 Modified fidelity subgraph for the Boykov–Kolmogorov algorithm . 64

6.1 Restoration using a uniform tensor 67
6.2 The different stages of the restoration algorithm visualized 67
6.3 Color wheel . 68
6.4 Effects of the 𝜎 and 𝜌 parameters on restoration 69
6.5 Anisotropy tensor visualized for a fingerprint test image 69
6.6 Shapes restored to show artifacts introduced by neighborhood choice 71

83

84 LIST OF FIGURES

6.7 Noisy Lena restored using different neighborhood stencils 72
6.8 Approximation error when calculating the perimeter of one pixel . . 72
6.9 Comparison of contrast loss in regular and anisotropic total variation 74
6.10 1D slice through restored fingerprints showing contrast differences . 74
6.11 Lena restored, shown with method noise 75

List of Tables

4.1 Graph construction for 𝐹 𝑥
𝜆 (𝑢𝜆

𝑥) . 44
4.2 Graph construction for 𝐹 𝑥,𝑦(𝑢𝜆

𝑥, 𝑢𝜆
𝑦) 46

5.1 Graph construction for 𝐹 𝑥
𝜆 (𝑢𝜆

𝑥) in the Boykov–Kolmogorov algorithm 65

6.1 Circle circumferences estimated by the Cauchy–Crofton formula . . 73

85

86 LIST OF TABLES

List of Symbols

|𝐶| The length of the curve 𝐶, page 25

|𝐶|𝑀 The length of the curve 𝐶 using the metric tensor 𝑀 , page 25

𝛼(∇𝑢) Scalar thermal diffusivity, page 4

𝛽 Regularization parameter, page 6

BV(Ω) Functions of bounded variation in Ω, page 7

𝛿 Noise function, page 3

ℓ𝜈,𝜌 Line given by tangent vector 𝜈 and distance to origin 𝜌, page 25

ℓ𝜙,𝜌 Line given by angle of normal 𝜙 and distance to origin 𝜌, page 25

𝜒𝐸 Characteristic function of the set 𝐸, page 9

‖𝜂‖∗
𝐴 The norm sup𝑥(𝜂𝑇 𝐴−1𝜂)1/2, page 12

‖𝜉‖𝐴 The norm sup𝑥(𝜉𝑇 𝐴𝜉)1/2, page 12

𝒢 Regular grid of pixels over Ω, page 9

ℒ The set of all straight lines in the plane, page 25

𝒩(𝑥) Neighborhood of pixel 𝑥, page 35

𝒫 Discrete set of pixel values, or levels, page 9

∇𝑓𝜎 Edge detector, page 13

Ω Rectangular, open domain, page 3

87

88 LIST OF SYMBOLS

𝜔 Anisotropy parameter, page 15

Per𝐴(𝑈; Ω) Anisotropic perimeter of set 𝑈 using anisotropy tensor 𝐴, page 23

�̃� Symmetric extension of 𝑢 from Ω to ℝ2, page 6

TV(𝑢) Total variation of 𝑢, page 7

TV𝐴(𝑢) Anisotropic total variation of 𝑢 given anisotropy tensor 𝐴, page 12

𝐴(𝑢) Thermal diffusivity tensor, page 5

𝐴(𝑥) Anisotropy tensor, page 11

𝑐(𝑢, 𝑣) Capacity function 𝑐 ∶ 𝑉 × 𝑉 → [0, ∞), page 41

𝐶∞(Ω) Space of infinitely differentiable functions from Ω to ℝ., page 6

𝐶∞
𝑐 (Ω, ℝ2) Space of smooth functions from Ω to ℝ2 with compact support in

Ω, page 7

𝑑(𝑢) Height map or distance labeling 𝑑 ∶ 𝑉 → ℕ, page 52

𝑒(𝑢) Excess in vertex 𝑢, page 52

𝑓 Original, noisy image, page 3

𝐺 = (𝑉 , 𝐸, 𝑐) Graph given by the vertices 𝑉 , edges 𝐸, and capacity function 𝑐,
page 41

𝐽𝑀(ℓ𝜙,𝜌) Jacobian of the coordinate transformation induced by the metric
tensor 𝑀 , page 26

𝐾𝜎(𝑥, 𝑦) The Gaussian kernel, page 4

𝐿𝑝(Ω) Real functions 𝑓 on Ω for which ∫Ω|𝑓|𝑝 < ∞, page 6

𝑀(𝑥) The metric tensor, page 25

𝑁𝑥(𝑘) Helper function 𝑁𝑥(𝑘) = |𝑘 − 𝑓𝑥|2, page 33

𝑠 The source vertex, page 41

𝑆𝜌(𝑥) Structure tensor, page 6

𝑡 The sink vertex, page 41

𝑢∗ Usually unknown, actual image without noise, page 3

𝑢𝜆 Thresholded image at level 𝜆, page 9

Appendix A
C++ implementation

A C++ implementation of the method described is included here and can also be
found online at [29]. It uses the open computer vision library OpenCV [30] to load
and save image files and contains compilation and usage instructions. The imple-
mentation has been tested on an installation of the Ubuntu Linux distribution,
but it should in theory be portable to other platforms supported by OpenCV. A
rudimentary graphics interface has also been made, to make it easier to play with
the parameters of the algorithm.

Both the push-relabel and the Boykov–Kolmogorov algorithms have been im-
plemented. Although an effort has been made to improve the performance of both
implementations, they are not ment to beat the fastest. The focus has rather been
on clarity and understanding.

Note that when implementing maximum flow algorithms it is not a good idea,
memory- and performance-wise, to actually construct the residual graph 𝐺𝑓 . In-
stead, every time we update the flow 𝑓(𝑢, 𝑣) we set the flow in the opposite direc-
tion to its negative value 𝑓(𝑣, 𝑢) = −𝑓(𝑢, 𝑣). Then we can at any time, consider
the value 𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣) in the place of the residual capacity 𝑐𝑓(𝑢, 𝑣).

For the gap relabeling heuristic of the push-relabel algorithm, we need to have
a easy way of finding when a gap occurs. This is done by keeping track of how
many vertices exist with each label.

When the capacities have been updated in the Boykov–Kolmogorov algorithm,
flow is sent along all two-edge paths such that they do not have to be considered
by the main loop of the algorithm.

89

90 APPENDIX A. C++ IMPLEMENTATION

A.1 main.cpp
Main function of the command line executable. Here we read and parse command
line parameters.

1 #include <iostream>
2 #include <cstdlib>
3 #include <cmath>
4 #include <cstdio>
5 #include <unistd.h>
6 #include <opencv2/opencv.hpp>
7 #include "graph.hpp"
8 #include "selectionrule.hpp"
9 #include "neighborhood.hpp"

10 #include "image.hpp"
11 #include "anisotropy.hpp"
12
13 using namespace std;
14 using namespace cv;
15
16 int main(int argc, char *argv[])
17 {
18 int p = 2;
19 double beta = 10;
20
21 int neighbors = 8;
22
23 double sigma = 10.0;
24 double rho = 10.0;
25 double gamma = 10000.0;
26
27 int c;
28
29 /* Read command line parameters beta and p. */
30 while ((c = getopt(argc, argv, "b:p:r:s:g:n:fh")) != -1) {
31 switch (c)
32 {
33 case 'p':
34 p = atoi(optarg);
35 break;
36 case 'b':
37 beta = atof(optarg);
38 break;
39 case 'g':
40 gamma = atof(optarg);
41 break;
42 case 'r':
43 rho = atof(optarg);
44 break;
45 case 's':
46 sigma = atof(optarg);
47 break;
48 case 'n':
49 neighbors = atoi(optarg);
50 break;
51 case '?':
52 if (optopt == 'p' || optopt == 'b' || optopt == 'g'
53 || optopt == 'n' || optopt == 'r'
54 || optopt == 's') {
55 fprintf(stderr, "Option -%c requires an argument.\n",
56 optopt);
57 }
58 else if (isprint(optopt)) {
59 fprintf(stderr, "Unknown option `-%c'.\n", optopt);

A.1. MAIN.CPP 91

60 }
61 else {
62 fprintf(stderr, "Unknown option character `\\x%x'.\n",
63 optopt);
64 }
65 return 1;
66 default:
67 exit(1);
68 }
69 }
70
71 /*
72 * Non-option arguments are now in argv from index optind
73 * to index argc-1
74 */
75 Mat image;
76 image = imread(argv[optind], CV_LOAD_IMAGE_GRAYSCALE);
77
78 if (!image.data) {
79 cout << "Loading image failed" << endl;
80 return -1;
81 }
82
83 cout << "Using gamma = " << gamma << endl;
84 cout << "Using rho = " << rho << endl;
85 cout << "Using sigma = " << sigma << endl;
86
87 Mat_<Tensor> tensors = Mat_<Tensor>::zeros(image.rows, image.cols);
88 Mat blur, edge, structure, color;
89 createAnisotropyTensor(tensors, image, sigma, rho, gamma,
90 blur, edge, structure, color);
91 imwrite(argv[optind + 1], blur);
92 imwrite(argv[optind + 2], edge);
93 imwrite(argv[optind + 3], structure);
94 imwrite(argv[optind + 4], color);
95
96 /*
97 * Network only handles integer edges, so we increase the scale a bit.
98 */
99 int a;

100 int b;
101 a = 100;
102 b = beta;
103
104 /*
105 * Specify the neighbors of a pixel.
106 */
107 cout << "Creating size " << neighbors << " neighborhood." << endl;
108 Neighborhood neigh;
109 if (neighbors >= 4) {
110 neigh.add(1, 0, b * 1.0);
111 neigh.add(0, 1, b * 1.0);
112 neigh.add(-1, 0, b * 1.0);
113 neigh.add(0,-1, b * 1.0);
114 }
115
116 if (neighbors >= 8) {
117 neigh.add(1, 1, b * 1.0/sqrt(2.0));
118 neigh.add(-1, 1, b * 1.0/sqrt(2.0));
119 neigh.add(1,-1, b * 1.0/sqrt(2.0));
120 neigh.add(-1,-1, b * 1.0/sqrt(2.0));
121 }
122
123 if (neighbors >= 16) {
124 neigh.add8(1, 2, 1.0);

92 APPENDIX A. C++ IMPLEMENTATION

125 }
126
127 if (neighbors >= 32) {
128 neigh.add8(3, 1, 1.0);
129 neigh.add8(3, 2, 1.0);
130 }
131
132 if (neighbors >= 48) {
133 neigh.add8(1, 4, 1.0);
134 neigh.add8(3, 4, 1.0);
135 }
136
137 if (neighbors >= 72) {
138 neigh.add8(1, 5, 1.0);
139 neigh.add8(2, 5, 1.0);
140 neigh.add8(3, 5, 1.0);
141 }
142
143 cout << "Neighborhood: " << endl;
144 neigh.setupAngles();
145 for (Neighborhood::iterator it = neigh.begin(); it != neigh.end(); ++it) {
146 cout << it->x << ", " << it->y << ": " << it->dt * 180 / M_PI << endl;
147 }
148
149 Mat out = image.clone();
150 restoreAnisotropicTV(image, out, tensors, neigh, a, b, p);
151
152 cout << "Writing output to " << argv[optind + 5] << endl;
153 imwrite(argv[optind + 5], out);
154
155 return 0;
156 }

A.2 image.hpp
Calculates and sets up graph weights based on the input image and parame-
ters.

1 #pragma once
2
3 #include <vector>
4 #include <set>
5 #include <opencv2/opencv.hpp>
6 #include "graph.hpp"
7 #include "selectionrule.hpp"
8 #include "neighborhood.hpp"
9 #include "anisotropy.hpp"

10
11 void createEdgesAnisotropic(
12 FlowGraph& network,
13 Neighborhood& neigh,
14 int beta,
15 const cv::Mat_<Tensor>& tensors
16);
17 void setupSourceSink(FlowGraph& network, cv::Mat& in, int alpha, int label, int p);
18 void setupSource(FlowGraph& network, cv::Mat& in, int alpha, int label, int p);
19 void setupSink(FlowGraph& network, cv::Mat& in, int alpha, int label, int p);
20
21 void restoreAnisotropicTV(
22 cv::Mat& in,
23 cv::Mat& out,

A.3. IMAGE.CPP 93

24 cv::Mat_<Tensor>& tensors,
25 Neighborhood& neigh,
26 int alpha, int beta, int p
27);

A.3 image.cpp
1 #include <iostream>
2 #include <fstream>
3 #include <algorithm>
4 #include <set>
5 #include <iterator>
6 #include <cmath>
7 #include <opencv2/opencv.hpp>
8 #include "image.hpp"
9 #include "neighborhood.hpp"

10 #include "selectionrule.hpp"
11 #include "anisotropy.hpp"
12
13 using namespace std;
14 using namespace cv;
15
16 int f(int u, int v, int p) {
17 return p == 2 ? (u - v) * (u - v) : abs(u - v);
18 }
19
20 /* Fidelity energy term. */
21 int Ei(int label, int pix, int u, int p) {
22 return (f(label+1, pix, p) - f(label, pix, p)) * u;
23 }
24
25 void createEdgesAnisotropic(
26 FlowGraph& network,
27 Neighborhood& neigh,
28 int beta,
29 const Mat_<Tensor>& tensors
30) {
31
32 int rows = tensors.rows;
33 int cols = tensors.cols;
34 int pixels = rows * cols;
35
36 /*
37 * Add sink edges first, so that the first push in discharge
38 * will go towards the sink. The capacities are set up in
39 * setupSourceSink.
40 */
41 for (int i = 0; i < pixels; ++i) {
42 network.addEdge(i, network.getSink(), 0);
43 }
44
45 /*
46 * Create internal edges, which do not depend on the current
47 * level.
48 */
49 for (int i = 0; i < rows; ++i) {
50 for (int j = 0; j < cols; ++j) {
51 Neighborhood::iterator it;
52
53 for (it = neigh.begin(); it != neigh.end(); ++it) {
54
55 /* Only add edges for right half of the neighborhood. */

94 APPENDIX A. C++ IMPLEMENTATION

56 if (it->x < 0)
57 continue;
58 if (it->x == 0 && it->y > 0)
59 continue;
60
61 int x = j + it->x;
62 int y = i + it->y;
63
64 if (x >= 0 && x < cols && y >= 0 && y < rows) {
65
66 Mat ee = (Mat_<double>(2, 1) << it->x, it->y);
67 Mat M1 = Mat(tensors(i, j));
68 Mat M2 = Mat(tensors(y, x));
69
70 Mat M3 = (M1 + M2) / 2.0;
71
72 double w = beta
73 * norm(ee) * norm(ee)
74 * determinant(M3)
75 * it->dt
76 / pow(ee.dot(M3 * ee), 3.0 / 2.0);
77
78 network.addDoubleEdge(
79 i*cols + j,
80 y*cols + x,
81 w
82);
83 }
84 }
85 }
86 }
87
88 /*
89 * Add edges from the source. Capacities are set up in
90 * setupSourceSink.
91 */
92 for (int i = 0; i < pixels; ++i) {
93 network.addEdge(network.getSource(), i, 0);
94 }
95 }
96
97 /*
98 * Change the capacities of the edges connecting the source
99 * and the sink to the rest of the network, as these edges

100 * are dependent on the current level.
101 */
102 void setupSourceSink(FlowGraph& network, Mat& in, int alpha, int label, int p) {
103 std::vector<int> s_caps(in.rows * in.cols);
104 std::vector<int> t_caps(in.rows * in.cols);
105
106 for (int j = 0; j < in.rows; ++j) {
107 for (int i = 0; i < in.cols; ++i) {
108 int e1 = Ei(label, in.at<uchar>(j, i), 1, p);
109
110 if (0 < e1) {
111 t_caps[j*in.cols + i] += e1 - 0;
112 }
113 else {
114 s_caps[j*in.cols + i] += 0 - e1;
115 }
116 }
117 }
118
119 for (size_t i = 0; i < s_caps.size(); ++i) {
120 network.changeCapacity(network.getSource(), i, alpha * s_caps[i]);

A.3. IMAGE.CPP 95

121 }
122
123 for (size_t i = 0; i < t_caps.size(); ++i) {
124 network.changeCapacity(i, network.getSink(), alpha * t_caps[i]);
125 }
126 }
127
128 /* Update edges connected to the source. Used by Boykov--Kolmogorov. */
129 void setupSource(FlowGraph& network, Mat& in, int alpha, int label, int p) {
130 std::vector<int> s_caps(in.rows * in.cols);
131
132 for (int j = 0; j < in.rows; ++j) {
133 for (int i = 0; i < in.cols; ++i) {
134 int e1init = Ei(255, in.at<uchar>(j, i), 1, p);
135 int e1 = Ei(label, in.at<uchar>(j, i), 1, p);
136
137 s_caps[j*in.cols + i] += max(e1init, 0) - e1;
138 }
139 }
140
141 for (size_t i = 0; i < s_caps.size(); ++i) {
142 if (s_caps[i] != 0)
143 network.changeCapacity(network.getSource(), i, alpha * s_caps[i]);
144 }
145 }
146
147 /* Update edges connected to the sink. Used by Boykov--Kolmogorov. */
148 void setupSink(FlowGraph& network, Mat& in, int alpha, int label, int p) {
149 std::vector<int> t_caps(in.rows * in.cols);
150
151 for (int j = 0; j < in.rows; ++j) {
152 for (int i = 0; i < in.cols; ++i) {
153 int e1init = Ei(255, in.at<uchar>(j, i), 1, p);
154
155 t_caps[j*in.cols + i] += max(e1init, 0);
156 }
157 }
158
159 for (size_t i = 0; i < t_caps.size(); ++i) {
160 if (t_caps[i] != 0)
161 network.changeCapacity(i, network.getSink(), alpha * t_caps[i]);
162 }
163 }
164
165 /* Restore image. */
166 void restoreAnisotropicTV(
167 Mat& in,
168 Mat& out,
169 Mat_<Tensor>& tensors,
170 Neighborhood& neigh,
171 int alpha, int beta, int p
172) {
173
174 int rows = in.rows;
175 int cols = in.cols;
176 int pixels = rows * cols;
177 int source = pixels;
178 int sink = pixels + 1;
179
180 FIFORule frule(pixels + 2);
181 SelectionRule& rule = frule;
182 FlowGraph network(rows * cols + 2, source, sink, rule);
183
184 createEdgesAnisotropic(network, neigh, beta, tensors);
185

96 APPENDIX A. C++ IMPLEMENTATION

186 #ifdef BOYKOV_KOLMOGOROV
187 setupSink(network, in, alpha, 255, p);
188 #endif
189
190 for (int label = 255; label >= 0; --label) {
191 cout << "Label: " << label << endl;
192
193 #ifdef PUSH_RELABEL
194 setupSourceSink(network, in, alpha, label, p);
195 network.minCutPushRelabel(source, sink);
196 #else
197 setupSource(network, in, alpha, label, p);
198 network.minCutBK(source, sink);
199 #endif
200
201 /* Use the cut to update the output image. */
202 for (int j = 0; j < rows; ++j) {
203 for (int i = 0; i < cols; ++i) {
204 if (!network.cut[j*cols + i])
205 out.at<uchar>(j, i) = label;
206 }
207 }
208 }
209 }

A.4 anisotropy.hpp
Construction of anisotropy tensor.

1 #pragma once
2
3 #include <opencv2/opencv.hpp>
4
5 typedef cv::Matx<double, 2, 2> Tensor;
6
7 void createAnisotropyTensor(
8 cv::Mat_<Tensor>& tensors,
9 cv::Mat& in,

10 double sigma,
11 double rho,
12 double gamma,
13 cv::Mat& blur,
14 cv::Mat& edge,
15 cv::Mat& structure,
16 cv::Mat& color
17);
18
19 void createUniformAnisotropyTensor(cv::Mat_<Tensor>& tensors, cv::Mat& in, double gamma);

A.5 anisotropy.cpp
1 #include <opencv2/opencv.hpp>
2 #include <cstdlib>
3 #include <cstdio>
4 #include "anisotropy.hpp"
5
6 using namespace cv;
7 using namespace std;
8

A.5. ANISOTROPY.CPP 97

9 void createAnisotropyTensor(
10 Mat_<Tensor>& tensors,
11 Mat& in,
12 double sigma,
13 double rho,
14 double gamma,
15 cv::Mat& blur,
16 cv::Mat& edge,
17 cv::Mat& structure,
18 cv::Mat& color
19) {
20
21 Mat grad;
22
23 /* Apply blur by sigma. */
24 GaussianBlur(in, blur, Size(0,0), sigma, 0, BORDER_REFLECT);
25
26 Mat grad_x, grad_y;
27 Mat kernel;
28
29 Point anchor = Point(-1, -1);
30
31 kernel = Mat::zeros(1, 3, CV_16S);
32
33 kernel.at<short>(0, 0) = -1;
34 kernel.at<short>(0, 1) = 0;
35 kernel.at<short>(0, 2) = 1;
36
37 /* Calculate gradient in x and y. */
38 filter2D(blur, grad_x, CV_64F, kernel, anchor, 0, BORDER_REFLECT);
39 transpose(kernel, kernel);
40 filter2D(blur, grad_y, CV_64F, kernel, anchor, 0, BORDER_REFLECT);
41
42 Mat x_sq, y_sq, xy;
43 Mat x_sqr, y_sqr, xyr;
44
45 /* Element of outer product. */
46 x_sq = grad_x.mul(grad_x);
47 y_sq = grad_y.mul(grad_y);
48 xy = grad_x.mul(grad_y);
49
50 /* Integration scale (rho) smoothing. */
51 GaussianBlur(x_sq, x_sqr, Size(0,0), rho, 0, BORDER_REFLECT);
52 GaussianBlur(y_sq, y_sqr, Size(0,0), rho, 0, BORDER_REFLECT);
53 GaussianBlur(xy , xyr , Size(0,0), rho, 0, BORDER_REFLECT);
54
55 Mat evec, eval;
56
57 Mat h = Mat::zeros(in.size(), CV_64F);
58 Mat s = Mat::zeros(in.size(), CV_64F);
59 Mat v = Mat::zeros(in.size(), CV_64F);
60 Mat hsv;
61 vector<Mat> channels;
62
63 edge.create(in.size(), CV_64F);
64
65 for (int i = 0; i < in.rows; ++i) {
66 for (int j = 0; j < in.cols; ++j) {
67 /* Structure tensor. */
68 Tensor b = Tensor(
69 x_sqr.at<double>(i,j),
70 xyr.at<double>(i,j),
71 xyr.at<double>(i,j),
72 y_sqr.at<double>(i,j)
73);

98 APPENDIX A. C++ IMPLEMENTATION

74
75 /* Structure tensor without rho smoothing, for the edge detector. */
76 Tensor c = Tensor(
77 x_sq.at<double>(i,j),
78 xy.at<double>(i,j),
79 xy.at<double>(i,j),
80 y_sq.at<double>(i,j)
81);
82
83 /* Returns the eigenvectors as row vectors! */
84 eigen(b, eval, evec);
85
86 double s1 = eval.at<double>(0);
87 double s2 = eval.at<double>(1);
88
89 if (s2 > s1)
90 fprintf(stderr, "OOPS: Wrong ordering of eigenvalues\n");
91
92 double l1 = 1.0;
93 double l2 = 1.0 / (1.0 + (s1 - s2) * (s1 - s2) / (gamma*gamma));
94
95 Mat eval2 = eval.clone();
96 eval2.at<double>(0) = l1;
97 eval2.at<double>(1) = l2;
98 tensors(i, j) = Tensor(Mat(evec.t() * Mat::diag(eval2) * evec));
99

100 h.at<double>(i, j) = fmod(atan2(evec.at<double>(1), evec.at<double>(0))
101 * 180.0 / M_PI + 180.0, 180.0);
102 s.at<double>(i, j) = 0;
103 v.at<double>(i, j) = 1.0/(1.0 + l2);
104
105 /* Returns the eigenvectors as row vectors! */
106 eigen(c, eval, evec);
107
108 s1 = eval.at<double>(0);
109 s2 = eval.at<double>(1);
110
111 edge.at<double>(i, j) = s1;
112 }
113 }
114 normalize(edge, edge, 0, 255, NORM_MINMAX, CV_8U);
115
116 /* Create tensor visualization, double the size. */
117 structure.create(in.size(), CV_64F);
118 GaussianBlur(in, structure, Size(0,0), sigma, 0, BORDER_REFLECT);
119 cvtColor(structure, structure, CV_GRAY2BGR);
120 resize(structure, structure, Size(0, 0), 2, 2);
121 for (int i = 0; i < in.rows; i += 15) {
122 for (int j = 0; j < in.cols; j += 15) {
123 Tensor b = tensors(i, j);
124
125 eigen(b, eval, evec);
126
127 double s1 = eval.at<double>(0);
128 double s2 = eval.at<double>(1);
129
130 Point2f p1(evec.row(0));
131 Point2f p2(evec.row(1));
132 line(structure, 2*Point(j, i), 2*Point2f(j, i) + 20 * s2 * p1,
133 CV_RGB(255,0,0), 1.2, CV_AA);
134 line(structure, 2*Point(j, i), 2*Point2f(j, i) + 20 * s1 * p2,
135 CV_RGB(0,0,0), 1.2, CV_AA);
136 }
137 }
138

A.6. GRAPH.HPP 99

139 Mat ho, so, vo;
140 h.convertTo(ho, CV_8U);
141 normalize(s, so, 255, 255, NORM_MINMAX, CV_8U);
142 normalize(v, vo, 0, 255, NORM_MINMAX, CV_8U);
143
144 channels.push_back(ho);
145 channels.push_back(so);
146 channels.push_back(vo);
147 merge(channels, hsv);
148
149 cvtColor(hsv, color, CV_HSV2BGR);
150 }
151
152 /* Create a uniform tensor, for testing. */
153 void createUniformAnisotropyTensor(Mat_<Tensor>& tensors, Mat& in, double gamma) {
154 Mat evec, eval;
155 for (int i = 0; i < in.rows; ++i) {
156 for (int j = 0; j < in.cols; ++j) {
157 Tensor b = Tensor(1, 1, 1, 1);
158
159 /* Returns the eigenvectors as row vectors! */
160 eigen(b, eval, evec);
161
162 double l1 = 1.0 / gamma;
163 double l2 = 1.0;
164
165 Mat eval2 = eval.clone();
166 eval2.at<double>(0) = l1;
167 eval2.at<double>(1) = l2;
168 tensors(i, j) = Tensor(Mat::diag(eval2));
169 }
170 }
171 }

A.6 graph.hpp
Graph class with the maximum flow algorithms.

1 #pragma once
2
3 #include <iostream>
4 #include <queue>
5 #include <vector>
6 #include <list>
7 #include <set>
8 #include "selectionrule.hpp"
9

10 enum Color { FREE = 0, SOURCE, SINK };
11
12 class Edge {
13 private:
14
15 public:
16 int from, to;
17 int cap;
18 int flow;
19 int index;
20
21 Edge(int f, int t, int c, int i) :
22 from(f), to(t), cap(c), flow(0), index(i) {}
23 };
24

100 APPENDIX A. C++ IMPLEMENTATION

25 class Vertex {
26 private:
27
28 public:
29 std::vector<Edge> e;
30 Color c;
31 bool active;
32 Edge *p;
33 int height;
34 int excess;
35 int si;
36 int ti;
37
38 Vertex(Color c, bool a) :
39 c(c), active(a), p(NULL), height(0), excess(0), si(0), ti(0) {}
40
41 Vertex() :
42 c(FREE), active(false), p(NULL), height(0), excess(0), si(0), ti(0) {}
43 };
44
45 class FlowGraph {
46 private:
47 int N;
48 int source, sink;
49 std::vector<Vertex > G;
50 std::vector<int> count;
51 SelectionRule& rule;
52
53 /* BK stuff */
54 std::queue<int> bkq;
55 std::queue<int> orphans;
56
57 int lastGrowVertex;
58 size_t lastIndex;
59 public:
60 std::vector<char> cut;
61
62 FlowGraph(int N, int source, int sink, SelectionRule& rule) :
63 N(N),
64 source(source),
65 sink(sink),
66 G(N),
67 count(N+1),
68 rule(rule),
69 lastGrowVertex(-1),
70 cut(N) {
71
72 #ifdef BOYKOV_KOLMOGOROV
73 bkq.push(source);
74 bkq.push(sink);
75 G[source].c = SOURCE;
76 G[sink].c = SINK;
77 G[source].active = true;
78 G[sink].active = true;
79 #endif
80 }
81
82 int getSource() const { return source; }
83 int getSink() const { return sink; }
84 void addEdge(int from, int to, int cap);
85 void addDoubleEdge(int from, int to, int cap);
86 void changeCapacity(int from, int index, int cap);
87 void resetFlow();
88 void resetHeights();
89

A.7. GRAPH.CPP 101

90 void push(Edge &e);
91 void push(Edge &e, int f);
92 void relabel(int u);
93 void gap(int h);
94 void discharge(int u);
95 void minCutPushRelabel(int source, int sink);
96
97 void minCutBK(int source, int sink);
98 int augment(Edge *e);
99 int treeCap(const Edge& e, Color col) const;

100 int treeOrigin(int u, int &len) const;
101 void adopt();
102 Edge *grow();
103 };

A.7 graph.cpp
1 #include <iostream>
2 #include <queue>
3 #include <stack>
4 #include <vector>
5 #include <algorithm>
6 #include <cassert>
7 #include <cstdlib>
8
9 #include "graph.hpp"

10
11 using namespace std;
12
13 /* Add an edge from one vertex to another. */
14 void FlowGraph::addEdge(int from, int to, int cap) {
15 G[from].e.push_back(Edge(from, to, cap, G[to].e.size()));
16 if (from == to) G[from].e.back().index++;
17 int index = G[from].e.size() - 1;
18 G[to].e.push_back(Edge(to, from, 0, index));
19
20 if (from == source)
21 G[to].si = index;
22
23 if (to == sink)
24 G[from].ti = index;
25 }
26
27 /*
28 * Add an edge and at the same time an antiparallel edge
29 * with the same capacity.
30 */
31 void FlowGraph::addDoubleEdge(int from, int to, int cap) {
32 G[from].e.push_back(Edge(from, to, cap, G[to].e.size()));
33 G[to].e.push_back(Edge(to, from, cap, G[from].e.size() - 1));
34 }
35
36 #ifdef PUSH_RELABEL
37
38 /*
39 * Change the capacity of an edge. Need the from-vertex and
40 * the index of the edge in its edge list (returned from addEdge.
41 */
42 void FlowGraph::changeCapacity(int from, int to, int cap) {
43 int index;
44 if (from == source) {
45 index = G[to].si;

102 APPENDIX A. C++ IMPLEMENTATION

46 } else if (to == sink) {
47 index = G[from].ti;
48 } else {
49 exit(1);
50 }
51
52 int diff = G[from].e[index].flow - cap;
53
54 G[from].e[index].cap = cap;
55
56 /* Check if we need to reduce the flow. */
57 if (diff > 0) {
58 G[from].excess += diff;
59 G[to].excess -= diff;
60 G[from].e[index].flow = cap;
61 G[to].e[G[from].e[index].index].flow = -cap;
62 rule.add(from, G[from].height, G[from].excess);
63 }
64 }
65
66 #else
67
68 /*
69 * Change the capacity of an edge. Need the from-vertex and
70 * the index of the edge in its edge list (returned from addEdge)
71 */
72 void FlowGraph::changeCapacity(int from, int to, int cap) {
73 int index;
74 if (from == source) {
75 index = G[to].si;
76 } else if (to == sink) {
77 index = G[from].ti;
78 } else {
79 exit(1);
80 }
81
82 /* Nodes in the S set can not send any more flow anyways. */
83 if (from == source && G[to].c == SOURCE)
84 return;
85
86 G[from].e[index].cap = cap;
87
88 if (from != source)
89 return;
90
91 /* Push flow along two-edged path. */
92 int si = G[to].si;
93 int ti = G[to].ti;
94
95 Edge *sv, *vt;
96 sv = &G[source].e[si];
97 vt = &G[to].e[ti];
98
99 int rs = sv->cap - sv->flow;

100 int rt = vt->cap - vt->flow;
101
102 if (rs > 0 && rt > 0) {
103 int m = min(rs, rt);
104 push(*sv, m);
105 push(*vt, m);
106
107 if (m == rs && G[to].p == sv) {
108 G[to].p = NULL;
109 orphans.push(to);
110 }

A.7. GRAPH.CPP 103

111
112 if (m == rt && G[to].p == vt) {
113 G[to].p = NULL;
114 orphans.push(to);
115 }
116 }
117
118 /* Activate vertices if the new edge was not saturated. */
119 if (G[from].e[si].flow != G[from].e[si].cap) {
120 if (!G[from].active) {
121 bkq.push(from);
122 G[from].active = true;
123 }
124 if (!G[to].active) {
125 bkq.push(to);
126 G[to].active = true;
127 }
128 }
129 }
130
131 #endif
132
133 /* Reset all flow and excess. */
134 void FlowGraph::resetFlow() {
135 for (size_t i = 0; i < G.size(); ++i) {
136 for (size_t j = 0; j < G[i].e.size(); ++j) {
137 G[i].e[j].flow = 0;
138 }
139 G[i].excess = 0;
140 }
141 }
142
143 /* Reset all distance labels. */
144 void FlowGraph::resetHeights() {
145 for (size_t i = 0; i < G.size(); ++i) {
146 G[i].height = 0;
147 }
148 fill(count.begin(), count.end(), 0);
149 }
150
151 /* Push along an edge. */
152 void FlowGraph::push(Edge &e) {
153 int flow = min(e.cap - e.flow, G[e.from].excess);
154 G[e.from].excess -= flow;
155 G[e.to].excess += flow;
156 e.flow += flow;
157 G[e.to].e[e.index].flow -= flow;
158
159 rule.add(e.to, G[e.to].height, G[e.to].excess);
160 }
161
162 /* Push given flow along an edge. */
163 void FlowGraph::push(Edge &e, int f) {
164 e.flow += f;
165 G[e.to].e[e.index].flow -= f;
166 }
167
168 /* Relabel a vertex. */
169 void FlowGraph::relabel(int u) {
170 count[G[u].height]--;
171 G[u].height = 2*N;
172
173 for (size_t i = 0; i < G[u].e.size(); ++i) {
174 if (G[u].e[i].cap > G[u].e[i].flow) {
175 G[u].height = min(G[u].height, G[G[u].e[i].to].height + 1);

104 APPENDIX A. C++ IMPLEMENTATION

176 }
177 }
178
179 if (G[u].height >= N) {
180 G[u].height = N;
181 }
182 else {
183 count[G[u].height]++;
184 rule.add(u, G[u].height, G[u].excess);
185 }
186 }
187
188 /* Relabel all vertices over the gap h to label N. */
189 void FlowGraph::gap(int h) {
190 for (size_t i = 0; i < G.size(); ++i) {
191 if (G[i].height < h) continue;
192 if (G[i].height >= N) continue;
193
194 rule.deactivate(i);
195
196 count[G[i].height]--;
197 G[i].height = N;
198 }
199
200 rule.gap(h);
201 }
202
203 /* Discharge a vertex. */
204 void FlowGraph::discharge(int u) {
205 size_t i;
206 for (i = 0; i < G[u].e.size() && G[u].excess > 0; ++i) {
207 if (G[u].e[i].cap > G[u].e[i].flow
208 && G[u].height == G[G[u].e[i].to].height + 1) {
209 push(G[u].e[i]);
210 }
211 }
212
213 if (G[u].excess > 0) {
214 /* Check if a gap will appear. */
215 if (count[G[u].height] == 1)
216 gap(G[u].height);
217 else
218 relabel(u);
219 }
220 }
221
222 /* Run the push-relabel algorithm to find the min-cut. */
223 void FlowGraph::minCutPushRelabel(int source, int sink) {
224 G[source].height = N;
225
226 rule.activate(source);
227 rule.activate(sink);
228
229 for (size_t i = 0; i < G[source].e.size(); ++i) {
230 G[source].excess = G[source].e[i].cap;
231 push(G[source].e[i]);
232 }
233 G[source].excess = 0;
234
235 int c = 0;
236 /* Loop over active nodes using selection rule. */
237 while (!rule.empty()) {
238 c++;
239 int u = rule.next();
240 discharge(u);

A.7. GRAPH.CPP 105

241 }
242
243 /* Output the cut based on vertex heights. */
244 for (size_t i = 0; i < cut.size(); ++i) {
245 cut[i] = G[i].height >= N;
246 }
247 }
248
249 /* The capacity of the edge, in the direction given by the tree. */
250 int FlowGraph::treeCap(const Edge& e, Color col) const {
251 if (col == SOURCE)
252 return e.cap - e.flow;
253 else if (col == SINK)
254 return G[e.to].e[e.index].cap - G[e.to].e[e.index].flow;
255 else
256 return 0;
257 }
258
259 /* Try to grow the trees S and T from the active vertices. */
260 Edge *FlowGraph::grow() {
261 while (!bkq.empty()) {
262 int p = bkq.front();
263 if (!G[p].active) {
264 bkq.pop();
265 continue;
266 }
267
268 size_t i = 0;
269
270 /*
271 * If we're growing from the same vertex as before,
272 * continue with the same index, if not restart at 0.
273 */
274 if (lastGrowVertex == p)
275 i = lastIndex;
276
277 lastGrowVertex = p;
278
279 for (; i < G[p].e.size(); ++i) {
280 lastIndex = i;
281 Edge *e = &G[p].e[i];
282 int q = e->to;
283
284 if (G[p].c == G[q].c)
285 continue;
286
287 if (treeCap(*e, G[p].c) <= 0)
288 continue;
289
290 if (G[q].c == FREE) {
291 /* Found a free vertex, add it. */
292 G[q].c = G[p].c;
293
294 int len;
295 if (G[p].c == SOURCE) {
296 G[q].p = e;
297 assert(treeOrigin(p, len) == source);
298 } else if (G[p].c == SINK) {
299 G[q].p = &G[q].e[e->index];
300 assert(treeOrigin(p, len) == sink);
301 } else {
302 cout << G[p].c << endl;
303 exit(1);
304 }
305 (void)len;

106 APPENDIX A. C++ IMPLEMENTATION

306
307 G[q].active = 1;
308 bkq.push(q);
309 }
310 else if (G[q].c != G[p].c) {
311 /* The trees meet! */
312 if (G[p].c == SOURCE) {
313 return e;
314 }
315 else if (G[p].c == SINK) {
316 return &G[q].e[e->index];
317 }
318 else {
319 exit(1);
320 }
321
322 return NULL;
323 }
324 }
325
326 bkq.pop();
327 G[p].active = 0;
328 }
329
330 /* Path is empty */
331 return NULL;
332 }
333
334 /* Augment along path given by the edge e, and implicitly by the trees. */
335 int FlowGraph::augment(Edge* e) {
336 int m = e->cap - e->flow;
337
338 /* Find maximum flow we can send. */
339 Edge *cur = e;
340 while (cur != NULL) {
341 m = min(m, cur->cap - cur->flow);
342 cur = G[cur->from].p;
343 }
344
345 cur = e;
346 while (cur != NULL) {
347 m = min(m, cur->cap - cur->flow);
348 cur = G[cur->to].p;
349 }
350
351 cur = e;
352 bool back = true;
353 int len = 0;
354 /* Loop through path and update flow. */
355 while (cur != NULL) {
356 /* If saturated, we must orphanize. */
357 if (cur->cap - cur->flow == m) {
358 int u = cur->from;
359 int v = cur->to;
360
361 if (G[u].c == SOURCE && G[v].c == SOURCE) {
362 if (v != source && v != sink) {
363 orphans.push(v);
364 G[v].p = NULL;
365 }
366 }
367 if (G[u].c == SINK && G[v].c == SINK) {
368 if (u != source && u != sink) {
369 orphans.push(u);
370 G[u].p = NULL;

A.7. GRAPH.CPP 107

371 }
372 }
373 }
374 len++;
375 push(*cur, m);
376
377 /*
378 * If we reach the source, we must start again
379 * in e, and go towards the sink.
380 */
381 if (back) {
382 cur = G[cur->from].p;
383 if (cur == NULL) {
384 back = false;
385 cur = G[e->to].p;
386 }
387 } else {
388 cur = G[cur->to].p;
389 }
390 }
391 return len;
392 }
393
394 /* Find the origin of vertex u. */
395 int FlowGraph::treeOrigin(int u, int &len) const {
396 int cur = u;
397 len = 0;
398
399 if (G[cur].c == SOURCE) {
400 while (G[cur].p != NULL) {
401 cur = G[cur].p->from;
402 len++;
403 }
404 } else if (G[cur].c == SINK) {
405 while (G[cur].p != NULL) {
406 cur = G[cur].p->to;
407 len++;
408 }
409 } else {
410 exit(1);
411 }
412
413 return cur;
414 }
415
416 /* Adopt orphans. */
417 void FlowGraph::adopt() {
418 while (orphans.size() > 0) {
419 int u = orphans.front();
420 orphans.pop();
421
422 assert(G[u].c != FREE);
423
424 int minlen = 1000000000;
425 int minidx = -1;
426 /* Aim to find parent close to the root of the tree. */
427 for (size_t i = 0; i < G[u].e.size(); ++i) {
428 int v = G[u].e[i].to;
429
430 if (G[u].c != G[v].c)
431 continue;
432
433 if (treeCap(G[v].e[G[u].e[i].index], G[u].c) <= 0)
434 continue;
435

108 APPENDIX A. C++ IMPLEMENTATION

436 int len;
437 int origin = treeOrigin(v, len);
438 if (origin != source && origin != sink)
439 continue;
440
441 if (len < minlen) {
442 minlen = len;
443 minidx = i;
444 }
445 if (minlen <= 2) break;
446 /* Found a possible parent */
447 }
448
449 bool found = false;
450 if (minidx != -1) {
451 int i = minidx;
452 int v = G[u].e[i].to;
453 int len;
454 int origin = treeOrigin(v, len);
455
456 if (origin == source) {
457 G[u].p = &G[v].e[G[u].e[i].index];
458 found = true;
459 } else if (origin == sink) {
460 G[u].p = &G[u].e[i];
461 found = true;
462 } else {
463 exit(1);
464 }
465 }
466
467 /* If not found, free vertex, and orphanize possible children. */
468 if (!found) {
469 for (size_t i = 0; i < G[u].e.size(); ++i) {
470 int v = G[u].e[i].to;
471
472 if (G[u].c != G[v].c)
473 continue;
474
475 if (treeCap(G[v].e[G[u].e[i].index], G[v].c) > 0) {
476 G[v].active = true;
477 bkq.push(v);
478 }
479
480 if (v == source || v == sink)
481 continue;
482
483 if (G[v].p
484 && (G[v].p->to == u
485 || G[v].p->from == u)) {
486 orphans.push(v);
487 G[v].p = NULL;
488 }
489 }
490
491 G[u].c = FREE;
492
493 G[u].active = false;
494 /* We might still have u in the queue */
495 }
496 }
497 }
498
499 void FlowGraph::minCutBK(int source, int sink) {
500 lastGrowVertex = -1;

A.8. SELECTIONRULE.HPP 109

501 adopt();
502
503 int numpaths = 0;
504 double totlen = 0;
505 while (true) {
506 Edge *e;
507 e = grow();
508
509 if (e == NULL) {
510 /* Empty path. */
511 break;
512 }
513
514 totlen += augment(e);
515 numpaths++;
516 adopt();
517 }
518
519 cout << "Avg length: " << double(totlen) / double(numpaths) << endl;
520
521 int size1 = 0, size2 = 0;
522 for (size_t i = 0; i < cut.size(); ++i) {
523 if (G[i].c == SOURCE) size1++;
524 else if (G[i].c == SINK) size2++;
525 cut[i] = G[i].c == SOURCE;
526 }
527 cout << "Inbetweeners: " << cut.size() - size1 - size2 << endl;
528 }

A.8 selectionrule.hpp
Highest level and FIFO selection rules for the push-relabel algorithm.

1 #pragma once
2
3 #include <iostream>
4 #include <queue>
5 #include <vector>
6 #include <exception>
7
8 class EmptyQueueException : public std::exception {
9 virtual const char* what() const throw()

10 {
11 return "Empty Queue Exception";
12 }
13 };
14
15 class SelectionRule {
16
17 protected:
18 int N;
19
20 private:
21 std::vector<char> active;
22
23 public:
24 virtual int next(void) = 0;
25 virtual void add(int u, int height, int excess) = 0;
26 virtual bool empty(void) = 0;
27 virtual void gap(int h) = 0;
28
29 void activate(int u) { active[u] = 1; }

110 APPENDIX A. C++ IMPLEMENTATION

30 void deactivate(int u) { active[u] = 0; }
31 bool isActive(int u) { return active[u]; }
32
33 SelectionRule(int N) : N(N), active(N) {}
34
35 virtual ~SelectionRule() {}
36 };
37
38 class HighestLevelRule : virtual public SelectionRule {
39
40 private:
41 int highest;
42 std::vector<std::queue<int> > hq;
43
44 void updateHighest(void);
45
46 public:
47 virtual int next(void);
48 virtual void add(int u, int height, int excess);
49 virtual bool empty(void);
50 virtual void gap(int h);
51
52 HighestLevelRule(int N) : SelectionRule(N), highest(-1), hq(N) {}
53 };
54
55 class FIFORule : virtual public SelectionRule {
56
57 private:
58 std::queue<int> q;
59
60 public:
61 virtual int next(void);
62 virtual void add(int u, int height, int excess);
63 virtual bool empty(void);
64 virtual void gap(int h);
65
66 FIFORule(int N) : SelectionRule(N) {}
67 };

A.9 selectionrule.cpp
1 #include "selectionrule.hpp"
2
3 using namespace std;
4
5 void HighestLevelRule::gap(int h) {
6 highest = h - 1;
7 updateHighest();
8 }
9

10 void HighestLevelRule::updateHighest(void) {
11 int s = highest;
12 highest = -1;
13
14 for (int i = s; i >= 0; --i) {
15 if (hq[i].size() > 0) {
16 highest = i;
17 break;
18 }
19 }
20 }
21

A.10. NEIGHBORHOOD.HPP 111

22 bool HighestLevelRule::empty(void) {
23 return highest < 0;
24 }
25
26 int HighestLevelRule::next(void) {
27 if (empty()) throw EmptyQueueException();
28
29 int u = hq[highest].front();
30 hq[highest].pop();
31 deactivate(u);
32
33 updateHighest();
34
35 return u;
36 }
37
38 void HighestLevelRule::add(int u, int height, int excess) {
39 if (isActive(u)) return;
40 if (height >= N) return;
41 if (excess == 0) return;
42
43 hq[height].push(u);
44 if (height > highest) highest = height;
45 }
46
47 void FIFORule::gap(int h) {
48 }
49
50 int FIFORule::next(void) {
51 int u;
52
53 if (!q.empty()) {
54 u = q.front();
55 q.pop();
56 deactivate(u);
57 }
58 else {
59 throw EmptyQueueException();
60 }
61
62 return u;
63 }
64
65 void FIFORule::add(int u, int height, int excess) {
66 if (isActive(u)) return;
67 if (height >= N) return;
68 if (excess == 0) return;
69
70 activate(u);
71 q.push(u);
72 }
73
74 bool FIFORule::empty(void) {
75 return q.empty();
76 }

A.10 neighborhood.hpp
Neighborhood class that also calculates angular differences.

1 #pragma once
2

112 APPENDIX A. C++ IMPLEMENTATION

3 #include <iostream>
4 #include <vector>
5 #include <cmath>
6
7 class Coord {
8 public:
9 int x;

10 int y;
11 int w;
12 mutable double dt;
13
14 Coord() : x(0), y(0), w(0), dt(0.0) {}
15 Coord(int x, int y, int w) : x(x), y(y), w(w), dt(0.0) {}
16
17 double angle() {
18 return atan2(y, x);
19 }
20 };
21
22 class CoordCompare {
23 public:
24 bool operator()(const Coord& lhs, const Coord& rhs) {
25 double p1 = copysign(1.0 - lhs.x/(fabs(lhs.x) + fabs(lhs.y)), lhs.y);
26 double p2 = copysign(1.0 - rhs.x/(fabs(rhs.x) + fabs(rhs.y)), rhs.y);
27
28 return p1 < p2;
29 }
30 };
31
32 class Neighborhood {
33 private:
34 std::set<Coord, CoordCompare> v;
35
36 public:
37 void add(int x, int y, int w) {
38 v.insert(Coord(x, y, w));
39 }
40
41 void add8(int x, int y, int w) {
42 v.insert(Coord(x, y, w));
43 v.insert(Coord(-x, y, w));
44 v.insert(Coord(x,-y, w));
45 v.insert(Coord(-x,-y, w));
46 v.insert(Coord(y, x, w));
47 v.insert(Coord(-y, x, w));
48 v.insert(Coord(y,-x, w));
49 v.insert(Coord(-y,-x, w));
50 }
51
52 std::set<Coord, CoordCompare>::iterator begin() { return v.begin(); }
53 std::set<Coord, CoordCompare>::iterator end() { return v.end(); }
54 std::set<Coord, CoordCompare>::reverse_iterator rbegin() { return v.rbegin(); }
55 std::set<Coord, CoordCompare>::reverse_iterator rend() { return v.rend(); }
56 size_t size() { return v.size(); }
57
58 typedef std::set<Coord, CoordCompare>::iterator iterator;
59
60 void setupAngles() {
61 for (Neighborhood::iterator it = this->begin();
62 it != this->end();
63 ++it) {
64 Coord prev;
65 Coord next;
66
67 if (it == this->begin()) {

A.10. NEIGHBORHOOD.HPP 113

68 prev = *(this->rbegin());
69 } else {
70 prev = *(--it);
71 it++;
72 }
73
74 if (++it == this->end()) {
75 next = *(this->begin());
76 } else {
77 next = *it;
78 }
79 it--;
80
81 it->dt = next.angle() - prev.angle();
82 while (it->dt > 2.0 * M_PI)
83 it->dt -= 2.0 * M_PI;
84 while (it->dt < 0.0)
85 it->dt += 2.0 * M_PI;
86 it->dt /= 2.0;
87 }
88 }
89 };

	Introduction
	Methods in image restoration
	Diffusion filtering
	Total variation

	Continuous formulation
	Anisotropic total variation
	Well-posedness
	Anisotropic coarea formula
	Anisotropic Cauchy–Crofton formula

	Discrete formulation
	Discretization
	Graph cut approach

	Maximum flow
	Flow graphs
	Augmenting path algorithms
	Other algorithms
	Push–relabel algorithm
	Boykov–Kolmogorov algorithm

	Results
	Tensor parameters
	Neighborhood stencils
	Restoration

	Discussion and conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Symbols
	C++ implementation
	main.cpp
	image.hpp
	image.cpp
	anisotropy.hpp
	anisotropy.cpp
	graph.hpp
	graph.cpp
	selectionrule.hpp
	selectionrule.cpp
	neighborhood.hpp

